Skip to main content
Log in

Investigating a dose–response relationship between high-fat diet consumption and the contractile performance of isolated mouse soleus, EDL and diaphragm muscles

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Recent evidence has demonstrated an obesity-induced, skeletal muscle-specific reduction in contractile performance. The extent and magnitude of these changes in relation to total dose of high-fat diet consumption remains unclear. This study aimed to examine the dose–response relationship between a high-fat diet and isolated skeletal muscle contractility.

Methods

120 female CD1 mice were randomly assigned to either control group or groups receiving 2, 4, 8 or 12 weeks of a high-calorie diet (N = 24). At 20 weeks, soleus, EDL or diaphragm muscle was isolated (n = 8 in each case) and isometric force, work loop power output and fatigue resistance were measured.

Results

When analysed with respect to feeding duration, there was no effect of diet on the measured parameters prior to 8 weeks of feeding. Compared to controls, 8-week feeding caused a reduction in normalised power of the soleus, and 8- and 12-week feeding caused reduced normalised isometric force, power and fatigue resistance of the EDL. Diaphragm from the 12-week group produced lower normalised power, whereas 8- and 12-week groups produced significantly lower normalised isometric force. Correlation statistics indicated that body fat accumulation and decline in contractility will be specific to the individual and independent of the feeding duration.

Conclusion

The data indicate that a high-fat diet causes a decline in muscle quality with specific contractile parameters being affected in each muscle. We also uniquely demonstrate that the amount of fat gain, irrespective of feeding duration, may be the main factor in reducing contractile performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CF:

Cycle frequency

EDL:

Extensor digitorum longus

HFD:

High-fat diet

PO:

Power output

WL:

Work loop

References

  • Abdelmoula A, Martin V, Bouchant A et al (2012) Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab 37:269–275

    Article  PubMed  Google Scholar 

  • Akhmedov D, Berdeaux R (2013) The effects of obesity on skeletal muscle regeneration. Front Physiol 4:371. https://doi.org/10.3389/fphys.2013.00371

    Article  PubMed  PubMed Central  Google Scholar 

  • Altringham JD, Young IS (1991) Power output and the frequency of oscillatory work in mammalian diaphragm muscle: the effects of animal size. J Exp Biol 157:381–389

    CAS  PubMed  Google Scholar 

  • Anderson SR, Gilge DA, Steiber AL, Previs SF (2008) Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice. Metab Clin Exp 57:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aucouturier J, Lazaar N, Dore E, Meyer M, Ratel S, Duche P (2007) Cycling peak power in obese and lean 6-to 8-year-old girls and boys. Appl Physiol Nutr Metab 32:367–371

    Article  PubMed  Google Scholar 

  • Barclay C (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497:781–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay C (2005) Modelling diffusive O2 supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil 26:225–235

    Article  CAS  PubMed  Google Scholar 

  • Blimkie CJ, Ebbesen B, MacDougall D, Bar-Or O, Sale D (1989) Voluntary and electrically evoked strength characteristics of obese and nonobese preadolescent boys. Human biol 61:515–532

    CAS  PubMed  Google Scholar 

  • Bott KN, Gittings W, Fajardo VA et al (2017) Musculoskeletal structure and function in response to the combined effect of an obesogenic diet and age in male C57BL/6J mice. Mol Nutr Food Res

  • Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP (2006) Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 290:C567–C576. doi:00422.2005

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Katz A, Lännergren J, Abbate F, Westerblad H (2002) Regulation of myoplasmic Ca 2 in genetically obese (ob/ob) mouse single skeletal muscle fibres. Pflügers Arch Euro J Physiol 444:692–699

    Article  CAS  Google Scholar 

  • Capodaglio P, Vismara L, Menegoni F, Baccalaro G, Galli M, Grugni G (2009) Strength characterization of knee flexor and extensor muscles in Prader–Willi and obese patients. BMC Musculoskelet Disord 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciapaite J, Van Den Berg SA, Houten SM, Nicolay K, van Dijk KW, Jeneson JA (2015) Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast-versus slow-twitch muscle contractile function in C57BL/6J mice. J Nutr Biochem 26:155–164

    Article  CAS  PubMed  Google Scholar 

  • de Wilde J, Mohren R, van den Berg S et al (2008) Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genomics 32:360–369. doi:00219.2007

    Article  CAS  PubMed  Google Scholar 

  • Denies MS, Johnson J, Maliphol AB et al (2014) Diet-induced obesity alters skeletal muscle fiber types of male but not female mice. Physiol Rep 2:e00204. https://doi.org/10.1002/phy2.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshima H, Tamura Y, Kakehi S et al (2017) Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 5:e13250. https://doi.org/10.14814/phy2.13250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761

    Article  CAS  PubMed  Google Scholar 

  • Hulens M, Vansant G, Lysens R, Claessens A, Muls E, Brumagne S (2001) Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes 25:676

    Article  CAS  Google Scholar 

  • James RS, Altringham JD, Goldspink DF (1995) The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. J Exp Biol 198:491–502

    CAS  PubMed  Google Scholar 

  • James RS, Young IS, Cox VM, Goldspink DF, Altringham JD (1996) Isometric and isotonic muscle properties as determinants of work loop power output. Pflügers Archiv Euro J Physiol 432:767–774

    Article  CAS  Google Scholar 

  • James RS, Kohlsdorf T, Cox VM, Navas CA (2005) 70 µM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle. Eur J Appl Physiol 95:74–82

    Article  CAS  PubMed  Google Scholar 

  • Josephson RK (1985) Mechanical power output from striated muscle during cyclic contraction. J Exp Biol 114:493–512

    Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    Article  CAS  PubMed  Google Scholar 

  • Kemp J, Blazev R, Stephenson DG, Stephenson G (2009) Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse. Int J Obes 33:831

    Article  CAS  Google Scholar 

  • Kopelman P (2007) Health risks associated with overweight and obesity. Obesity Rev 8:13–17

    Article  Google Scholar 

  • Mendez J, Keys A (1960) Density and composition of mammalian muscle. Metabolism 9:184–188

    CAS  Google Scholar 

  • Machann J, Bachmann OP, Brechtel K et al (2003) Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra-and interindividual differences and correlation with anthropometric and metabolic data. J Magn Reson Imaging 17:350–357

    Article  Google Scholar 

  • Maffiuletti NA, Jubeau M, Munzinger U et al (2007) Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur J Appl Physiol 101:51–59

    Article  Google Scholar 

  • Maffiuletti NA, Ratel S, Sartorio A, Martin V (2013) The impact of obesity on in vivo human skeletal muscle function. Curr Obesity Rep 2:251–260

    Article  Google Scholar 

  • Matsakas A, Prosdocimo DA, Mitchell R et al (2015) Investigating mechanisms underpinning the detrimental impact of a high-fat diet in the developing and adult hypermuscular myostatin null mouse. Skeletal muscle 5:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyatake N, Fujii M, Nishikawa H et al (2000) Clinical evaluation of muscle strength in 20–79-years-old obese Japanese. Diabetes Res Clin Pract 48:15–21

    Article  CAS  PubMed  Google Scholar 

  • Paolillo FR, Milan JC, Bueno Pde G et al (2012) Effects of excess body mass on strength and fatigability of quadriceps in postmenopausal women. Menopause 19:556–561. https://doi.org/10.1097/gme.0b013e3182364e80

    Article  PubMed  Google Scholar 

  • Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223

    Article  CAS  PubMed  Google Scholar 

  • Rogers P, Webb GP (1980) Estimation of body fat in normal and obese mice. Br J Nutr 43(1):83–86

    Article  CAS  PubMed  Google Scholar 

  • Rolland Y, Lauwers-Cances V, Pahor M, Fillaux J, Grandjean H, Vellas B (2004) Muscle strength in obese elderly women: effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr 79:552–557

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F, Tallis J, McShea K, James R (2017) Obesity-induced decreases in muscle performance are not reversed by weight loss. Int J Obes

  • Shortreed KE, Krause MP, Huang JH et al (2009) Muscle-specific adaptations, impaired oxidative capacity and maintenance of contractile function characterize diet-induced obese mouse skeletal muscle. PloS one 4:e7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymura J, Gradek J, Maciejczyk M, Wiȩcek M, Cempla J (2011) The anaerobic capacity in obese children. Gastroenterol Polska 18:147–153

    Google Scholar 

  • Tallis J, James RS, Cox VM, Duncan MJ (2012) The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle. J Appl Physiol (1985) 112:64–71. https://doi.org/10.1152/japplphysiol.00801.2011

    Article  CAS  Google Scholar 

  • Tallis J, James RS, Little AG, Cox VM, Duncan MJ, Seebacher F (2014) Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique. Am J Physiol Regul Integr Comp Physiol 307:R670–R684. https://doi.org/10.1152/ajpregu.00115.2014

    Article  CAS  PubMed  Google Scholar 

  • Tallis J, Higgins MF, Seebacher F, Cox VM, Duncan MJ, James RS (2017a) The effects of 8 weeks voluntary wheel running on the contractile performance of isolated locomotory (soleus) and respiratory (diaphragm) skeletal muscle during early ageing. J Exp Biol 220:3733–3741. https://doi.org/10.1242/jeb.166603

    Article  PubMed  Google Scholar 

  • Tallis J, Hill C, James RS, Cox VM, Seebacher F (2017b) The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J Appl Physiol (1985) 122:170–181. https://doi.org/10.1152/japplphysiol.00836.2016

    Article  CAS  Google Scholar 

  • Tallis J, James RS, Seebacher F (2018) The effects of obesity on skeletal muscle contractile function. J Exp Biol 221(13):jeb163840. https://doi.org/10.1242/jeb.163840

    Article  PubMed  Google Scholar 

  • Tanner CJ, Barakat HA, Dohm GL et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282:E1191–E1196. https://doi.org/10.1152/ajpendo.00416.2001

    Article  CAS  PubMed  Google Scholar 

  • Thomas MM, Trajcevski KE, Coleman SK et al (2014) Early oxidative shifts in mouse skeletal muscle morphology with high-fat diet consumption do not lead to functional improvements. Physiolo Rep 2:e12149

    Article  CAS  Google Scholar 

  • Tomlinson D, Erskine R, Morse C, Winwood K, Onambélé-Pearson G (2016) The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 17:467–483

    Article  CAS  Google Scholar 

  • Trajcevski KE, O’Neill HM, Wang DC et al (2013) Enhanced lipid oxidation and maintenance of muscle insulin sensitivity despite glucose intolerance in a diet-induced obesity mouse model. PLoS One 8:e71747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle LJ, Sinacore DR, Mueller MJ (2012) Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res 2012

  • Ward DS, Trost SG, Felton G et al (1997) Physical activity and physical fitness in African-American girls with and without obesity. Obesity 5:572–577

    Article  CAS  Google Scholar 

  • Warmington S, Tolan R, McBennett S (2000) Functional and histological characteristics of skeletal muscle and the effects of leptin in the genetically obese (ob/ob) mouse. Int J Obes 24:1040

    Article  CAS  Google Scholar 

  • Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol 205(2):194–208

    Article  CAS  Google Scholar 

  • Yoshida Y, Marcus RL, Lastayo PC (2012) Intramuscular adipose tissue and central activation in older adults. Muscle Nerve 46:813–816

    Article  Google Scholar 

  • Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86:1423–1427. https://doi.org/10.1172/JCI114857 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World health organisation (WHO) (2017) Available at http://www.who.int/en/news-room/factsheets/detail/obesity-and-overweight. Visited on 05 Dec 2017

  • World obesity federation (WOF) (2017) Available at https://www.worldobesity.org/data/child-obesity/. Visited on 05 Dec 2017

  • D’Souza DM, Trajcevski KE, Al-Sajee D et al (2015) Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol Rep. https://doi.org/10.14814/phy2.12506

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Mark Bodycote and Bethan Grist for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

JH, CH performed experiments; JH, JT analysed data; JH, JT, and RSJ interpreted results of experiments; JH prepared figures; JH and JT drafted manuscript; All edited and revised the manuscript; All approved the final version of manuscript.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by Phillip D Chilibeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurst, J., James, R.S., Cox, V.M. et al. Investigating a dose–response relationship between high-fat diet consumption and the contractile performance of isolated mouse soleus, EDL and diaphragm muscles. Eur J Appl Physiol 119, 213–226 (2019). https://doi.org/10.1007/s00421-018-4017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-4017-6

Keywords

Navigation