Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter?

Abstract

Purpose

The use of cryotherapy as a recovery intervention is prevalent amongst athletes. Performance of high volume, heavy load resistance exercise is known to result in disturbances of muscle function, perceptual responses and blood borne parameters. Therefore, this study investigated the influence of cold water immersion (CWI), whole body cryotherapy (WBC) or a placebo (PL) intervention on markers of recovery following an acute resistance training session.

Methods

24 resistance trained males were matched into a CWI (10 min at 10 °C), WBC (3- and 4 min at − 85 °C) or PL group before completing a lower body resistance training session. Perceptions of soreness and training stress, markers of muscle function, inflammation and efflux of intracellular proteins were assessed before, and up to 72 h post exercise.

Results

The training session resulted in increased soreness, disturbances of muscle function, and increased inflammation and efflux of intracellular proteins. Although WBC attenuated soreness at 24 h, and positively influenced peak force at 48 h compared to CWI and PL, many of the remaining outcomes were trivial, unclear or favoured the PL condition. With the exception of CRP at 24 h, neither cryotherapy intervention attenuated the inflammatory response compared to PL.

Conclusion

There was some evidence to suggest that WBC is more effective than CWI at attenuating select perceptual and functional responses following resistance training. However, neither cryotherapy intervention was more effective than the placebo treatment at accelerating recovery. The implications of these findings should be carefully considered by individuals employing cryotherapy as a recovery strategy following heavy load resistance training.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

CK-M:

Creatine kinase-M

CMJ:

Counter movement jump

CRP:

C-reactive protein

CWI:

Cold water immersion

DALDA:

Daily analysis of the lifestyle demands of athletes

DXA:

Dual X-say absorptiometry

ELISA:

Enzyme-linked immunosorbent assay

IL-6:

Interleukin-6

MVIC:

Maximal voluntary isometric contraction

PL:

Placebo

RFD:

Rate of force development

RM:

Repetition maximum

RSI:

Reactive strength index

TNF-α:

Tumour necrosis factor-α

WBC:

Whole body cryotherapy

References

  1. Abaïdia AE, Lamblin J, Delecroix B, Leduc C, McCall A, Nédélec M, Dupont G et al (2016) Recovery from exercise-induced muscle damage: cold water immersion versus whole body cryotherapy. Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2015-0012

    Article  PubMed  Google Scholar 

  2. Armstrong RB, Warren GL, Warren JA (1991) Mechanisms of exercise-induced muscle fibre injury. Sports Med 12(3):184–207. https://doi.org/10.2165/00007256-199112030-00004

    Article  CAS  PubMed  Google Scholar 

  3. Ascensão A, Leite M, Rebelo AN, Magalhäes S, Magalhäes J (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29(3):217–225. https://doi.org/10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  4. Bartolomei S, Hoffman JR, Merni F, Stout JR (2014) A comparison of traditional and block periodized strength training programs in trained athletes. J Strength Cond Res 28(4):990–997

    Article  PubMed  Google Scholar 

  5. Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57

    Article  PubMed  Google Scholar 

  6. Bleakley C, Mcdonough S, Gardner E, Baxter GD, Ty J, Davison GW (2012) Cold water immersion cryotherapy for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008262.pub2.Copyright

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bleakley CM, Bieuzen F, Davison GW, Costello JT (2014) Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open Access J Sports Med 5:25–36. https://doi.org/10.2147/OAJSM.S41655

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broatch JR, Petersen A, Bishop DJ (2014) Postexercise cold water immersion benefits are not greater than the Placebo effect. Med Sci Sports Exerc 46(11):2139–2147. https://doi.org/10.1249/MSS.0000000000000348

    Article  PubMed  Google Scholar 

  9. Byrne C, Eston R (2002) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20(5):417–425. https://doi.org/10.1080/026404102317366672

    Article  PubMed  Google Scholar 

  10. Chavda S, Bromley T, Jarvis P, Williams S, Bishop C, Turner AN, Mundy PD et al (2017) Force-time characteristics of the countermovement jump: analyzing the curve in excel. Strength Cond J 40:67–77

    Article  Google Scholar 

  11. Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil Assoc Acad Physiatr 81(11 Suppl):S52–S69. https://doi.org/10.1097/01.PHM.0000029772.45258.43

    Article  Google Scholar 

  12. Costello JT, Donnelly AE, Karki A, Selfe J (2014) Effects of whole body cryotherapy and cold water immersion on knee skin temperature. Int J Sports Med 35(1):35–40. https://doi.org/10.1055/s-0033-1343410

    CAS  Article  PubMed  Google Scholar 

  13. Crowley E, Harrison AJ, Lyons M (2017) The impact of resistance training on swimming performance: a systematic review. Sports Med 47:2285–2307

    Article  PubMed  Google Scholar 

  14. Day ML, Mcguigan MR, Brice G, Foster C (2004) Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res 18(2):353–358

    PubMed  Google Scholar 

  15. de Ruiter CJ, van der Linden RM, van der Zijden MJ a, Hollander, a P, de Haan, a (2003) Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88(4–5):472–475. https://doi.org/10.1007/s00421-002-0723-0

    Article  PubMed  Google Scholar 

  16. Dowse RA, McGuigan MR, Harrison C (2017) Effects of a resistance training intervention on strength, power, and performance in adolescent dancers. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002288

    Article  PubMed  Google Scholar 

  17. Flanagan EP, Comyns TM (2008) The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J 30(5):32–38

    Article  Google Scholar 

  18. Fulford J, Eston RG, Rowlands AV, Davies RC (2015) Assessment of magnetic resonance techniques to measure muscle damage 24 h after eccentric exercise. Scand J Med Sci Sports 25(1):e28–e39. https://doi.org/10.1111/sms.12234

    Article  CAS  PubMed  Google Scholar 

  19. Hayter KJ, Doma K, Schumann M, Deakin GB (2016) The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises. Peer J 4(e1841):1–17. https://doi.org/10.7717/peerj.1841

    Article  Google Scholar 

  20. Hohenauer E, Costello JT, Stoop R, Küng UM, Clarys P, Deliens T, Clijsen R (2018) Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage. Scand J Med Sci Sports 28(3):1252–1262. https://doi.org/10.1111/sms.13014

    Article  CAS  PubMed  Google Scholar 

  21. Hopkins WG (2015) Spreadsheets for analysis of controlled trials with adjustment for a predictor. Sport Sci 10:46–50

    Google Scholar 

  22. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–12. https://doi.org/10.1249/MSS.0b013e31818cb278

    Article  Google Scholar 

  23. Jakeman JR, Macrae R, Eston R (2009) A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics 52(4):456–460

    Article  CAS  PubMed  Google Scholar 

  24. Jakeman JR, Byrne C, Eston RG (2010) Lower limb compression garment improves recovery from exercise-induced muscle damage in young, active females. Eur J Appl Physiol 109(6):1137–1144. https://doi.org/10.1007/s00421-010-1464-0

    Article  PubMed  Google Scholar 

  25. Khan MA, Moiz JA, Raza S, Verma S, Shareef MY, Anwer S, Alghadir A (2016) Physical and balance performance following exercise induced muscle damage in male soccer players. J Phys Ther Sci 18(10):2942–2949. https://doi.org/10.1589/jpts.28.2942

    Article  Google Scholar 

  26. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G (2012) Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 46(4):233–240. https://doi.org/10.1136/bjsports-2011-090061

    Article  PubMed  Google Scholar 

  27. Leeder J, van Someren K, Gaze D, Jewell A, Deshmukh NIK, Shah I, Howatson G et al (2014) Recovery and adaptation from repeated intermittent-sprint exercise. Int J Sports Physiol Perform 9(3):489–496. https://doi.org/10.1123/ijspp.2012-0316

    Article  CAS  Google Scholar 

  28. Machado AF, Ferreira PH, Micheletti JK, de Almeida AC, Lemes ÍR, Vanderlei FM, Pastre CM et al (2016) Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med 46(4):503–514. https://doi.org/10.1007/s40279-015-0431-7

    Article  PubMed  Google Scholar 

  29. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. https://doi.org/10.1007/s00421-016-3346-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mawhinney C, Low DA, Jones H, Green DJ, Costello JT, Gregson W (2017) Water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001223

    Article  PubMed  Google Scholar 

  31. McClung M, Collins D (2007) Because I know it will!”: placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol 29(3):382–394

    Article  PubMed  Google Scholar 

  32. McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR (2012) Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr 9(1):19. https://doi.org/10.1186/1550-2783-9-19

    Article  PubMed  PubMed Central  Google Scholar 

  33. Minett GM, Costello JT (2015) Specificity and context in post-exercise recovery: it is not a one-size-fits-all approach. Front Physiol 6:1–3. https://doi.org/10.3389/fphys.2015.00130

    Article  Google Scholar 

  34. Nevill A, Lane A (2007) Why self-report “Likert” scale data should not be log-transformed. J Sports Sci 25(1):1–2. https://doi.org/10.1080/02640410601111183

    Article  PubMed  Google Scholar 

  35. Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136(2):533S–537S

    Article  CAS  PubMed  Google Scholar 

  36. Peñailillo L, Blazevich A, Numazawa H, Nosaka K (2015) Rate of force development as a measure of muscle damage. Scand J Med Sci Sports 25(3):417–427. https://doi.org/10.1111/sms.12241

    Article  PubMed  Google Scholar 

  37. Roberts LA, Nosaka K, Coombes JS, Peake JM (2015a) Cold water immersion enhances recovery of submaximal muscle function following resistance exercise. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00180.2014

    Article  PubMed  Google Scholar 

  38. Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, Peake JM et al (2015b) Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol 593(18):4285–4301. https://doi.org/10.1113/JP270570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Savic M, Fonda B, Sarabon N (2013) Actual temperature during and thermal response after whole-body cryotherapy in cryo-cabin. J Therm Biol 38(4):186–191. https://doi.org/10.1016/j.jtherbio.2013.02.004

    Article  Google Scholar 

  40. Selfe J, Alexander J, Costello JT, May K, Garratt N, Atkins S, Richards J et al (2014) The effect of three different (-135 °C) whole body cryotherapy exposure durations on elite rugby league players. PloS One 9(1):e86420. https://doi.org/10.1371/journal.pone.0086420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tee J, Bosch A, Lambert M (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37(10):827–836

    Article  PubMed  Google Scholar 

  42. Tipton MJ, Collier N, Massey H, Corbett J, Harper M (2017) Cold water immersion: kill or cure? Exp Physiol 102(11):1335–1355. https://doi.org/10.1113/EP086283

    Article  CAS  PubMed  Google Scholar 

  43. Vaile JM, Gill ND, Blazevich AJ (2007) The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J Strength Cond Res 21(3):697–702

    PubMed  Google Scholar 

  44. Vaile J, Halson S, Gill N, Dawson B (2008) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102:447–455. https://doi.org/10.1007/s00421-007-0605-6

    Article  PubMed  Google Scholar 

  45. Wathen D (1994) Load assignment. In: Baechle TR (ed) Essentials of strength training and conditioning. Human Kinetics, Champaign, pp 435–446

    Google Scholar 

  46. White GGE, Rhind SSG, Wells GGD (2014) The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol. https://doi.org/10.1007/s00421-014-2954-2

    Article  PubMed  Google Scholar 

  47. Wilson LJ, Cockburn E, Paice K, Sinclair S, Faki T, Hills FA, Dimitriou L et al (2018) Recovery following a marathon: a comparison of cold water immersion, whole body cryotherapy and a placebo control. Eur J Appl Physiol 118(1):153–163. https://doi.org/10.1007/s00421-017-3757-z

    Article  PubMed  Google Scholar 

Download references

Funding

No external funding was received for this work.

Author information

Affiliations

Authors

Contributions

LW, EC and LD conceived and designed research. LW, EC and LD conducted experiments. LW, EC, FH and MG analysed data. LW wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Laura J. Wilson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by George Havenith.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, L.J., Dimitriou, L., Hills, F.A. et al. Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter?. Eur J Appl Physiol 119, 135–147 (2019). https://doi.org/10.1007/s00421-018-4008-7

Download citation

Keywords

  • Muscle damage
  • Muscle function
  • Inflammation
  • Resistance training