Abstract
Purpose
The purpose of this study was to investigate the effects of mental fatigue, characterized by a subjective feeling of tiredness, on the development of neuromuscular fatigue during a 4-km cycling time trial (4-km TT).
Methods
Eight recreationally trained male cyclists performed a 4-km TT after either performing a prolonged cognitive task (mental fatigue) or after viewing emotionally neutral documentaries (control). The neuromuscular function of the knee extensors was assessed using electrical nerve stimulation at baseline, before (pre-TT), and after (post-TT) the 4-km TT. Rating of perceived exertion (RPE) and physiological variables were periodically measured during 4-km TT.
Results
Subjective ratings of fatigue increased significantly only after a prolonged cognitive task (P = 0.022). Neuromuscular function at baseline was similar between conditions and remained unchanged at pre-TT. Time to complete the 4-km TT was similar between control (376 ± 27 s) and mental fatigue (376 ± 26 s). There was no significant difference between conditions for RPE, \(~\dot {V}{{\text{O}}_2}\), \(\dot {V}{\text{E}}\), and HR throughout the exercise. The 4-km TT-induced similar decrease (from baseline to post-TT) in maximal voluntary contraction (mental fatigue − 11 ± 10%, control − 16 ± 12%), twitch force (mental fatigue − 26 ± 16%, control − 24 ± 17%), and voluntary activation (mental fatigue − 5 ± 7%, control − 3 ± 2%) for both conditions.
Conclusion
Mental fatigue induced by prolonged cognitive task does not impair performance nor alter the degree of central and peripheral fatigue development during self-paced exercise in recreationally trained cyclists.




Abbreviations
- ACC:
-
Anterior cingulate cortex
- ANOVA:
-
Analysis of variance
- CV%:
-
Coefficient of variation
- EMG:
-
Surface electromyography
- HR:
-
Heart rate
- ICC:
-
Intraclass correlation coefficient
- MVC:
-
Maximal voluntary contraction force
- PPO:
-
Peak power output
- RMS:
-
Root mean square
- RMSMVC :
-
EMG amplitude during MVC
- RMSTT :
-
EMG amplitude during time trial
- RPE:
-
Rating of perceived exertion
- TT:
-
Time trial
- VA:
-
Maximal voluntary activation level
- VAS:
-
Visual analogue scale
- \(~\dot {V}{\text{C}}{{\text{O}}_2}\) :
-
Carbon dioxide production
- \(\dot {V}{\text{E}}\) :
-
Minute ventilation
- \(\dot {V}{{\text{O}}_{{\text{2max}}}}\) :
-
Maximal oxygen uptake
- \(\eta _{P}^{2}\) :
-
Partial eta squared
- 4-km:
-
TT 4-km cycling time trial
References
Abbiss CR, Laursen PB (2008) Describing and understanding pacing strategies during athletic competition. Sports Med 38(3):239–252
Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586 (1):161–173. https://doi.org/10.1113/jphysiol.2007.141838
Azevedo R, Silva-Cavalcante MD, Gualano B, Lima-Silva AE, Bertuzzi R (2016) Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol 116(11–12):2293–2303. https://doi.org/10.1007/s00421-016-3483-y
Bassett DRJR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84
Bertuzzi R, Lima-Silva AE, Pires FO, Damasceno MV, Bueno S, Pasqua LA, Bishop DJ (2014) Pacing strategy determinants during a 10-km running time trial: contributions of perceived effort, physiological, and muscular parameters. J Strength Cond Res 28(6):1688–1696. https://doi.org/10.1519/JSC.0000000000000314
Bortolotti H, Altimari LR, Vitor-Costa M, Cyrino ES (2014) Performance during a 20-km cycling time-trial after caffeine ingestion. J Int Soc Sports Nutr 11:45. https://doi.org/10.1186/s12970-014-0045-8
Brownsberger J, Edwards A, Crowther R, Cottrell D (2013) Impact of mental fatigue on self-paced exercise. Int J Sports Med 34(12):1029–1036. https://doi.org/10.1055/s-0033-1343402
Burnley M, Jones AM (2018) Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci 18(1):1–12. https://doi.org/10.1080/17461391.2016.1249524
Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280(5364):747–749
Clausen T (2003) Na+-K + pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324. https://doi.org/10.1152/physrev.00011.2003
Correia-Oliveira CR, Santos RA, Silva-Cavalcante MD, Bertuzzi R, Kiss MA, Bishop DJ, Lima-Silva AE (2014) Prior low- or high-intensity exercise alters pacing strategy, energy system contribution and performance during a 4-km cycling time trial. PLoS One 9(10): e110320. https://doi.org/10.1371/journal.pone.0110320
De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R (2013) Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform 8(2):111–122
Duc S, Betik AC, Grappe F (2005) EMG activity does not change during a time trial in competitive cyclists. Int J Sports Med 26(2):145–150
Ducrocq GP, Hureau TJ, Meste O, Blain GM (2017) Increased fatigue response to augmented deceptive feedback during cycling time trial. Med Sci Sports Exerc 49(8):1541–1551. https://doi.org/10.1249/MSS.0000000000001272
Duncan MJ, Fowler N, George O, Joyce S, Hankey J (2015) Mental fatigue negatively influences manual dexterity and anticipation timing but not repeated high-intensity exercise performance in trained adults. Res Sports Med 23(1):1–13. https://doi.org/10.1080/15438627.2014.975811
Felippe LC, Ferreira GA, Learsi SK, Boari D, Bertuzzi R, Lima-Silva AE (2018) Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol 124(6):1491–1501. https://doi.org/10.1152/japplphysiol.00930.2017
Fitch S, McComas AJ (1985) Effect of human muscle length on fatigue. J Physiol 362:205–213
Froyd C, Beltrami FG, Millet GY, Noakes TD (2016) Central Regulation and Neuromuscular Fatigue during Exercise of Different Durations. Med Sci Sports Exerc 48(6):1024–1032. https://doi.org/10.1249/mss.0000000000000867
Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789
Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD (2001) The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports med 31(13):935–952
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374
Hicks A, McComas AJ (1989) Increased sodium pump activity following repetitive stimulation of rat soleus muscles. J Physiol 414:337–349
Hicks A, Fenton J, Garner S, McComas AJ (1985) M wave potentiation during and after muscle activity. J Appl Physiol 66(6):2606–2610
Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports med 30(1):1–15
Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. https://doi.org/10.1249/MSS.0b013e31818cb278
Hortobágyi T, Tracy J, Hamilton G, Lambert J (1996) Fatigue effects on muscle excitability. Int J Sports Med 17(6):409–414
Hug F, Laplaud D, Savin B, Grélot L (2003) Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. Eur J Appl Physiol 90(5–6):643–646
Hulleman M, De Koning JJ, Hettinga FJ, Foster C (2007) The effect of extrinsic motivation on cycle time trial performance. Med Sci Sports Exerc 39(4):709–715
Hureau TJ, Romer LM, Amann M (2018) The ‘sensory tolerance limit’: A hypothetical construct determining exercise performance? Eur J Sport Sci 18(1):13–24. https://doi.org/10.1080/17461391.2016.1252428
Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586(1):35–44
Lima-Silva AE, Bertuzzi RC, Pires FO, Barros RV, Gagliardi JF, Hammond J, Kiss MA, Bishop DJ(2010) Effect of performance level on pacing strategy during a 10-km running race. Eur J Appl Physiol 108(5):1045–1053. https://doi.org/10.1007/s00421-009-1300-6
Lindstrom L, Magnusson R, Petersén I (1970) Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 1970 10(4):341–356
Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, Tieu K, Nedergaard M (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A 109(16):6265–6270. https://doi.org/10.1073/pnas.1120997109
Lucía A, Hoyos J, Chicharro JL (2000) The slow component of \(~\dot {V}{{\text{O}}_2}\) in professional cyclists. Br J Sports Med 34(5):367–374
MacMahon C, Schucker L, Hagemann N, Strauss B (2014) Cognitive fatigue effects on physical performance during running. J Sport Exerc Psychol 36 (4):375–381. https://doi.org/10.1123/jsep.2013-0249
Marcora S (2010) Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J Appl Physiol 108(2):454–456. https://doi.org/10.1152/japplphysiol.00976.2009a. (discussion 456–457)
Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106(3):857–864. https://doi.org/10.1152/japplphysiol.91324.2008
Martin K, Thompson KG, Keegan R, Ball N, Rattray B (2015) Mental fatigue does not affect maximal anaerobic exercise performance. Eur J Appl Physiol 115(4):715–725. https://doi.org/10.1007/s00421-014-3052-1
Martin K, Staiano W, Menaspa P, Hennessey T, Marcora S, Keegan R, Thompson KG, Martin D, Halson S, Rattray B (2016) Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists. PloS one 11 (7):e0159907. https://doi.org/10.1371/journal.pone.0159907
Mauger AR, Jones AM, Williams CA (2009) Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc 41(2):451–458. https://doi.org/10.1249/MSS.0b013e3181854957
Neyroud D, Vallotton A, Millet GY, Kayser B, Place N (2014) The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114(1):205–215. https://doi.org/10.1007/s00421-013-2760-2
Noakes TD, St Clair Gibson A (2004) Logical limitations to the “catastrophe” models of fatigue during exercise in humans. Br J Sports Med 38(5):648–649
Pageaux B, Lepers R (2016) Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol 7:587. https://doi.org/10.3389/fphys.2016.00587
Pageaux B, Marcora SM, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45(12):2254–2264. https://doi.org/10.1249/MSS.0b013e31829b504a
Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114(5):1095–1105. https://doi.org/10.1007/s00421-014-2838-5
Pageaux B, Marcora SM, Rozand V, Lepers R (2015) Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci 9:67. https://doi.org/10.3389/fnhum.2015.00067
Paton CD, Hopkins WG (2006) Ergometer error and biological variation in power output in a performance test with three cycle ergometers. Int J Sports Med 27(6):444–447. https://doi.org/10.1055/s-2005-865781
Rozand V, Pageaux B, Marcora SM, Papaxanthis C, Lepers R (2014) Does mental exertion alter maximal muscle activation? Front Hum Neurosci 8:755. https://doi.org/10.3389/fnhum.2014.00755
Silva-Cavalcante MD, Correia-Oliveira CR, Santos RA, Lopes-Silva JP, Lima HM, Bertuzzi R, Duarte M, Bishop DJ, Lima-Silva AE (2013) Caffeine increases anaerobic work and restores cycling performance following a protocol designed to lower endogenous carbohydrate availability. PLoS One 8(8): e72025. https://doi.org/10.1371/journal.pone.0072025
Smith MR, Marcora SM, Coutts AJ (2015) Mental Fatigue Impairs Intermittent Running Performance. Med Sci Sports Exerc 47 (8):1682–1690. https://doi.org/10.1249/mss.0000000000000592
Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM (2016) Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance. Med Sci Sports Exerc 48(2):267–276. https://doi.org/10.1249/mss.0000000000000762
Stone MR, Thomas K, Wilkinson M, St Clair Gibson A, Thompson KG (2011) Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol 111(8):1807–1813. https://doi.org/10.1007/s00421-010-1818-7
Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350
Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T (1998) Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Med Sci Sports Exerc 30(3):442–449
Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L (2015) Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 47(3):537–546. https://doi.org/10.1249/mss.0000000000000448
Thomas K, Elmeua M, Howatson G, Goodall S (2016) Intensity-Dependent Contribution of Neuromuscular Fatigue after Constant-Load Cycling. Med Sci Sports Exerc 48(9):1751–1760. https://doi.org/10.1249/mss.0000000000000950
Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43(6):392–400. https://doi.org/10.1136/bjsm.2008.050799
Tucker R, Lambert MI, Noakes TD (2006) An analysis of pacing strategies during men’s world-record performances in track athletics. Int J Sports Physiol Perform 1(3):233–245
Van Duinen H, Renken R, Maurits N, Zijdewind I (2007) Effects of motor fatigue on human brain activity, an fMRI study. NeuroImage 35(4):1438–1449. https://doi.org/10.1016/j.neuroimage.2007.02.008
Van Cutsem J, De Pauw K, Buyse L, Marcora S, Meeusen R, Roelands B (2017) Effects of Mental Fatigue on Endurance Performance in the Heat. Med Sci Sports Exerc 49(8):1677–1687. https://doi.org/10.1249/mss.0000000000001263
Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF (2006) Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 19(8):1302–1314. https://doi.org/10.1016/j.neunet.2006.03.005
Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP (2001) Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physio 90(4):1392–1399
Acknowledgements
The authors thank the cyclists for their participation in this study. Marcos D. Silva-Cavalcante and Patrícia Guimaraes Couto are grateful to Coordination of Improvement of Personnel of Superior Level (CAPES) for Ph.D. scholarships. Marcos D. Silva-Cavalcante also is grateful to CAPES for current Post Doctoral Fellowship (PNPD/CAPES). The English text of this paper has been revised by Sidney Pratt, Canadian, MAT (The Johns Hopkins University), RSAdip—TESL (Cambridge University).
Author information
Authors and Affiliations
Contributions
Formulation of the idea and designed research by MDSC, RB, and AELS; data collection by MDSC, PGC, and RAA; data analysis and interpretation by MDSC, RB, DBC, AELS, PGC, and RAA; preparation of the manuscript by MDSC, RB, RGS, AELS, PGC, and RAA; edition and revision by MDSC, RB, RGS, DBC, AELS, PGC, and RAA. All authors have read and give final approval of this version of the manuscript for publication.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Anni Vanhatalo.
Rights and permissions
About this article
Cite this article
Silva-Cavalcante, M.D., Couto, P.G., Azevedo, R. et al. Mental fatigue does not alter performance or neuromuscular fatigue development during self-paced exercise in recreationally trained cyclists. Eur J Appl Physiol 118, 2477–2487 (2018). https://doi.org/10.1007/s00421-018-3974-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00421-018-3974-0