Skip to main content

Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits

Abstract

Introduction

Physical health and function depend upon both genetic inheritance and environmental factors (e.g., exercise training).

Purpose

To enhance the understanding of heritability/adaptability, we explored the skeletal muscle health and physiological performance of monozygotic (MZ) twins with > 30 years of chronic endurance training vs. no specific/consistent exercise.

Methods

One pair of male MZ twins (age = 52 years; Trained Twin, TT; Untrained Twin, UT) underwent analyses of: (1) anthropometric characteristics and blood profiles, (2) markers of cardiovascular and pulmonary health, and (3) skeletal muscle size, strength, and power and molecular markers of muscle health.

Results

This case study represents the most comprehensive physiological comparison of MZ twins with this length and magnitude of differing exercise history. TT exhibited: (1) lower body mass, body fat%, resting heart rate, blood pressure, cholesterol, triglycerides, and plasma glucose, (2) greater relative cycling power, anaerobic endurance, and aerobic capacity (VO2max), but lower muscle size/strength and poorer muscle quality, (3) more MHC I (slow-twitch) and fewer MHC IIa (fast-twitch) fibers, (4) greater AMPK protein expression, and (5) greater PAX7, IGF1Ec, IGF1Ea, and FN14 mRNA expression than UT.

Conclusions

Several measured differences are the largest reported between MZ twins (TT expressed 55% more MHC I fibers, 12.4 ml/kg/min greater VO2max, and 8.6% lower body fat% vs. UT). These data collectively (a) support utilizing chronic endurance training to improve body composition and cardiovascular health and (b) suggest the cardiovascular and skeletal muscle systems exhibit greater plasticity than previously thought, further highlighting the importance of studying MZ twins with large (long-term) differences in exposomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

%BF:

Body fat percentage

AMPK:

5′ AMP-activated protein kinase

B2M:

β-2-microglobulin

BMC:

Bone mineral content

BMD:

Bone mineral density

CHOL:

Total cholesterol

CS:

Citrate synthase

CSA:

Muscular cross-sectional area

DBP:

Diastolic blood pressure

DXA:

Dual-energy X-ray absorptiometry

ECL:

Enhanced chemiluminescent

EI:

Echo intensity

FEV1 :

Forced expiatory volume in the first second

FM:

Fat mass

FVC:

Forced vital capacity

HbA1c:

Glycosylated hemoglobin

HDL:

High-density lipoprotein

IGF1Ea:

Insulin-like growth factor a

IGF1Ec:

Mechano-growth factor

kcal:

Kilocalorie

LDL:

Low-density lipoprotein

LM:

Lean mass

MHC:

Myosin heavy chain

MSTN:

Myostatin

MT:

Muscle thickness

MVIC:

Maximal voluntary isometric contraction

MyHC:

Myosin heavy chain gene

MZ:

Monozygotic

NOS3:

Endothelial nitric oxide synthase

PP:

Peak power

PPIA:

Cyclophilin

QRT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

RER:

Respiratory exchange ratio

RHR:

Resting heart rate

RPE:

Rating of perceived exertion

RPM:

Rotations per minute

SBP:

Systolic blood pressure

TFAM:

Transcription factor A of the mitochondria

TNF:

Tumor necrosis factor-α

TRIG:

Triglycerides

TT:

Trained twin

UT:

Untrained twin

VAT:

Visceral adipose tissue

VEGFA:

Vascular endothelial growth factor

VL:

Vastus lateralis

VO2max:

Maximal aerobic capacity

WAnT:

Wingate anaerobic test

WEEE:

Weekly estimated energy expenditure

References

  • Adams TD, Yanowitz FG, Fisher AG, Ridges JD, Nelson AG, Hagan AD, Williams RR, Hunt SC (1985) Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation 71(1):39–44

    CAS  Article  PubMed  Google Scholar 

  • Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol (1985) 78(5):1969–1976

    CAS  Article  PubMed  Google Scholar 

  • Bagley JR, McLeland KA, Arevalo JA, Brown LE, Coburn JW, Galpin AJ (2017) Skeletal muscle fatigability and myosin heavy chain fiber type in resistance trained Men. J Strength Cond Res 31(3):602–607

    Article  PubMed  Google Scholar 

  • Boomsma D, Busjahn A, Peltonen L (2002) Classical twin studies and beyond. Nat Rev Genet 3(11):872–882

    CAS  Article  PubMed  Google Scholar 

  • Cornelissen VA, Verheyden B, Aubert AE, Fagard RH (2010) Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens 24(3):175–182

    CAS  Article  PubMed  Google Scholar 

  • Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM (2017) The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 8:87. https://doi.org/10.3389/fphys.2017.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Danis A, Kyriazis Y, Klissouras V (2003) The effect of training in male prepubertal and pubertal monozygotic twins. Eur J Appl Physiol 89(3–4):309–318

    Article  PubMed  Google Scholar 

  • Dickinson JM, Lee JD, Sullivan BE, Harber MP, Trappe SW, Trappe TA (2010) A new method to study in vivo protein synthesis in slow- and fast-twitch muscle fibers and initial measurements in humans. J Appl Physiol (1985) 108(5):1410–1416

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Eastwood PR, Hillman DR, Finucane KE (2001) Inspiratory muscle performance in endurance athletes and sedentary subjects. Respirology 6(2):95–104

    CAS  Article  PubMed  Google Scholar 

  • Fagard R, Van Den Broeke C, Bielen E, Amery A (1987) Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol 60(16):1362–1367

    CAS  Article  PubMed  Google Scholar 

  • Fagard R, Bielen E, Amery A (1991) Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol (1985) 70(1):357–362

    CAS  Article  PubMed  Google Scholar 

  • Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JF (2004) 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286(3):E411–E417

    CAS  Article  PubMed  Google Scholar 

  • Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N (2012) Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol 112(4):1519–1525

    Article  PubMed  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547(Pt 1):247–254

    CAS  Article  PubMed  Google Scholar 

  • Hannukainen JC, Borra R, Linderborg K, Kallio H, Kiss J, Lepomaki V, Kalliokoski KK, Kujala UM, Kaprio J, Heinonen OJ, Komu M, Parkkola R, Ahotupa M, Lehtimaki T, Huupponen R, Iozzo P, Nuutila P (2011) Liver and pancreatic fat content and metabolism in healthy monozygotic twins with discordant physical activity. J Hepatol 54(3):545–552

    CAS  Article  PubMed  Google Scholar 

  • Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147

    CAS  PubMed  Google Scholar 

  • Jacob C, Zouhal H, Vincent S, Gratas-Delamarche A, Berthon PM, Bentue-Ferrer D, Delamarche P (2002) Training status (endurance or sprint) and catecholamine response to the Wingate-test in women. Int J Sports Med 23(5):342–347

    CAS  Article  PubMed  Google Scholar 

  • Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One 4(9):e7038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmoller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. FASEB J fj201700442R

  • Klissouras V, Pigozzi F (2009) Genetic limits of sport performance: quo vadis? J Sports Med Phys Fitness 49(1):1–5

    CAS  PubMed  Google Scholar 

  • Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301(19):2024–2035

    CAS  Article  PubMed  Google Scholar 

  • Leskinen T, Sipila S, Alen M, Cheng S, Pietilainen KH, Usenius JP, Suominen H, Kovanen V, Kainulainen H, Kaprio J, Kujala UM (2009) Leisure-time physical activity and high-risk fat: a longitudinal population-based twin study. Int J Obes (Lond) 33(11):1211–1218. https://doi.org/10.1038/ijo.2009.170

    CAS  Article  Google Scholar 

  • Leskinen T, Rinnankoski-Tuikka R, Rintala M, Seppanen-Laakso T, Pollanen E, Alen M, Sipila S, Kaprio J, Kovanen V, Rahkila P, Oresic M, Kainulainen H, Kujala UM (2010) Differences in muscle and adipose tissue gene expression and cardio-metabolic risk factors in the members of physical activity discordant twin pairs. PLoS One 5:(9)

    Article  CAS  Google Scholar 

  • Leskinen T, Usenius JP, Alen M, Kainulainen H, Kaprio J, Kujala UM (2011) Leisure-time physical activity and artery lumen diameters: a monozygotic co-twin control study. Scand J Med Sci Sports 21(6):e208–e214

    CAS  Article  PubMed  Google Scholar 

  • Li X, Yang Q, Bai J, Xuan Y, Wang Y (2015) Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR. Biotechnol Lett 37(1):67–73

    CAS  Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    CAS  Article  PubMed  Google Scholar 

  • Mancini A, Vitucci D, Labruna G, Imperlini E, Randers MB, Schmidt JF, Hagman M, Andersen TR, Russo R, Orru S, Krustrup P, Salvatore F, Buono P (2017) Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity. Eur J Appl Physiol 117(4):721–730

    CAS  Article  PubMed  Google Scholar 

  • Murach KA, Bagley JR, McLeland KA, Arevalo JA, Ciccone AB, Malyszek KK, Wen Y, Galpin AJ (2016) Improving human skeletal muscle myosin heavy chain fiber typing efficiency. J Muscle Res Cell Motil

  • Pessina P, Conti V, Pacelli F, Rosa F, Doglietto GB, Brunelli S, Bossola M (2010) Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncol Rep 24(3):741–745

    CAS  PubMed  Google Scholar 

  • Raue U, Jemiolo B, Yang Y, Trappe S (2015) TWEAK-Fn14 pathway activation after exercise in human skeletal muscle: insights from two exercise modes and a time course investigation. J Appl Physiol 118(5):569–578

    CAS  Article  PubMed  Google Scholar 

  • Riebe D, Ehrman JK, Liguori G, Magal M (2018) ACSM’s guidelines for exercise testing and prescription, 10th edn. Wolters Kluwer, Philadelphia

    Google Scholar 

  • Rottensteiner M, Leskinen T, Niskanen E, Aaltonen S, Mutikainen S, Wikgren J, Heikkila K, Kovanen V, Kainulainen H, Kaprio J, Tarkka IM, Kujala UM (2015) Physical activity, fitness, glucose homeostasis, and brain morphology in twins. Med Sci Sports Exerc 47(3):509–518

    CAS  Article  PubMed  Google Scholar 

  • Schutte NM, Nederend I, Hudziak JJ, Bartels M, de Geus EJ (2016) Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol Genomics 48(3):210–219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Scribbans TD, Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ (2017) A systematic upregulation of nuclear and mitochondrial genes is not present in the initial postexercise recovery period in human skeletal muscle. Appl Physiol Nutr Metab 42(6):571–578

    CAS  Article  PubMed  Google Scholar 

  • Segal NL (2017) Twin mythconceptions: false beliefs, fables, and facts about twins. Twin mythconceptions. Academic Press, San Diego

    Google Scholar 

  • Silvennoinen M, Ahtiainen JP, Hulmi JJ, Pekkala S, Taipale RS, Nindl BC, Laine T, Hakkinen K, Selanne H, Kyrolainen H, Kainulainen H (2015) PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep 3 (10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoneau JA, Bouchard C (1995) Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9(11):1091–1095

    CAS  Article  PubMed  Google Scholar 

  • Tajrishi MM, Zheng TS, Burkly LC, Kumar A (2014) The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 25(2):215–225

    CAS  Article  PubMed  Google Scholar 

  • Thomis MA, Beunen GP, Maes HH, Blimkie CJ, Van Leemputte M, Claessens AL, Marchal G, Willems E, Vlietinck RF (1998) Strength training: importance of genetic factors. Med Sci Sports Exerc 30(5):724–731

    CAS  Article  PubMed  Google Scholar 

  • Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ (2018) Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 124(4):840–849

    Article  PubMed  Google Scholar 

  • Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trappe TA (2015) Skeletal muscle signature of a champion sprint runner. J Appl Physiol 118(12):1460–1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Volaklis KA, Halle M, Meisinger C (2015) Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med 26(5):303–310

    Article  PubMed  Google Scholar 

  • Welle S, Bhatt K, Thornton CA (1999) Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 86(4):1220–1225

    CAS  Article  PubMed  Google Scholar 

  • Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503

    Article  PubMed  Google Scholar 

  • Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Sr., Williamson JD, Wright JT Jr. (2017) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol

  • Wilmore JH, Stanforth PR, Gagnon J, Leon AS, Rao DC, Skinner JS, Bouchard C (1996) Endurance exercise training has a minimal effect on resting heart rate: the HERITAGE Study. Med Sci Sports Exerc 28(7):829–835

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kathryn McLeland, Cassio Ruas, Nathan Serrano, Kara Lazauskas, and Colleen Gulick for their assistance with this project. This research was funded by a California State University Development of Research and Creativity (CSU-DRC) Grant to J.R. Bagley.

Author information

Authors and Affiliations

Authors

Contributions

JRB and AJG conceived and designed this work. KEB, JRB, EJ, RJT, IST, JAA, and AJG performed the experiments. All authors collected and analyzed the data. KEB, JRB, LEB, JWC, NLS, and AJG interpreted the results of experiments. KEB, AJG, and JRB drafted the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Andrew J. Galpin.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Ethical standards

All procedures performed in this study were in accordance with the ethical standards of the University’s Institutional Review Board for Human Subjects and with the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bathgate, K.E., Bagley, J.R., Jo, E. et al. Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. Eur J Appl Physiol 118, 2097–2110 (2018). https://doi.org/10.1007/s00421-018-3943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3943-7

Keywords

  • Fiber type
  • Myosin heavy chain
  • Maximal oxygen consumption
  • Endurance training
  • FN14
  • PAX7
  • Body composition
  • AMPK
  • Aerobic exercise
  • Aging