Skip to main content
Log in

Effect of circulatory system response to motor control in one-sided contractions

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to clarify the effect one-sided skeletal muscle contraction has on the circulatory system, spinal α-motoneuron excitability, and somatosensory-system-evoked potential.

Method

Nine healthy males maintained tension at 10, 20, and 30% of maximal voluntary contraction in static gripping in right hand. Heart rate, ln high frequency (HF), blood pressure (BP), F-wave, and somatosensory-evoked potential (SEP) were recorded during gripping task. BP, F-wave and SEP were recorded from left hand (contralateral side from contracting side).

Result and conclusion

There were significant main effects of contractions strength on heart rate (0%: 68.2 ± 6.8 bpm, 10%: 67.6 ± 7.4 bpm, 20%: 69.7 ± 8.5 bpm, 30%: 73.7 ± 9.3 bpm, F3.24=9.18, P < 0.01), systolic BP (0%: 127.7 ± 15 mmHg, 10%: 136.2 ± 13.5 mmHg, 20%: 136.2 ± 13.5 mmHg, 30%: 140.0 ± 17.1 mmHg, F3.24=23.93, P < 0.01), diastolic BP (0%: 69.3 ± 8.5 mmHg, 10%: 76.9 ± 11.1 mmHg, 20%: 79.9 ± 12.5 mmHg, 30%: 86.2 ± 14 mmHg, F3.24=17.09, P < 0.01), and F-wave appearance rate (0%: 29.7 ± 15.6%, 10%: 39.3 ± 20.5%, 20%: 47.5 ± 22.9%, 30%: 55.2 ± 21.8%, F3.24=14.04, P < 0.01). For the ln HF (0%: 5.9 ± 0.6, 10%: 6.3 ± 0.9, 20%: 6.3 ± 1.3, 30%: 6.0 ± 1.0, F3.24=2.43, P = 0.08), F-wave latency (0%: 29.6 ± 1.7 ms, 10%: 26.9 ± 2.1 ms, 20%: 26.5 ± 3.6 ms, 30%: 26.9 ± 2.3 ms, F3.24=0.11, P = 0.96), F-wave amplitude (0%: 2.0 ± 0.9%, 10%: 2.2 ± 0.9%, 20%: 2.3 ± 0.7%, 30%: 2.8 ± 1.1%, F3.24=2.80, P = 0.06), and N20 amplitude (0%: 3.9 ± 1.7 µV, 10%: 3.7 ± 1.7 µV, 20%: 3.9 ± 1.7 µV, 30%: 3.9 ± 1.8 µV, F3.24=0.61, P = 0.62), between the conditions. We conclude that regulation of the circulatory system and motor system has a limited effect on sensory input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

A one-way analysis of variance

EMG:

Electromyography

HF:

High frequency

ln:

Natural logarithms

MVC:

Maximum voluntary contraction

SD:

Standard deviation

SEP:

Somatosensory-evoked potential

References

  • Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694–710

    Article  PubMed  CAS  Google Scholar 

  • Angel RW, Boylls CC, Weinrich M (1984) Cerebral evoked potentials and somatosensory perception. Neurology 34:123–126

    Article  PubMed  CAS  Google Scholar 

  • Bocker KB, Forget R, Brunia CH (1993) The modulation of somatosensory evoked potentials during the foreperiod of a forewarned reaction time task. Electroencephalogr Clin Neurophysiol 88:105–117

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Adams RW, Skuse NF (1989) The effects of voluntary contraction on the H reflex of human limb muscles. Brain 112(Pt 2):417–433

    Article  PubMed  Google Scholar 

  • Cheron G, Borenstein S (1987) Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr Clin Neurophysiol 67:537–548

    Article  PubMed  CAS  Google Scholar 

  • Clancy JA, Johnson R, Raw R, Deuchars SA, Deuchars J (2014) Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimul 7:97–104

    Article  PubMed  Google Scholar 

  • Cohen LG, Starr A (1985) Vibration and muscle contraction affect somatosensory evoked potentials. Neurology 35:691–698

    Article  PubMed  CAS  Google Scholar 

  • Green D, Cheetham C, Mavaddat L, Watts K, Best M, Taylor R, O’Driscoll G (2002) Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol Heart Circ Physiol 283:889–907

    Google Scholar 

  • Hagbarth KE, Vallbo AB (1968) Discharge characteristics of human muscle afferents during muscle stretch and contraction. Exp Neurol 22:674–694

    Article  PubMed  CAS  Google Scholar 

  • Hajduczok G, Hade JS, Mark AL, Williams JL, Felder RB (1991) Central command increases sympathetic nerve activity during spontaneous locomotion in cats. Circ Res 69:66–75

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H, Pierrot-Deseilligny E (1979) Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique. J Physiol 297:229–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell JH, Reeves DR Jr, Rogers HB, Secher NH, Victor RG (1989) Autonomic blockade and cardiovascular responses to static exercise in partially curarized man. J Physiol 413:433–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishihira Y, Araki H, Ishihara A (1990) Suppression of cerebral evoked potentials preceding rapid reaction movement. J Sports Med Phys Fit 30:291–296

    CAS  Google Scholar 

  • Rivner MH (2008) The use of F-waves as a probe for motor cortex excitability. Clin Neurophysiol 119:1215–1216

    Article  PubMed  Google Scholar 

  • Saito M, Mano T, Iwase S (1990) Changes in muscle sympathetic nerve activity and calf blood flow during static handgrip exercise. Eur J Appl Physiol Occup Physiol 60:277–281

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Victor RG (1991) Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc Sport Sci Rev 19:313–349

    Article  PubMed  CAS  Google Scholar 

  • Silber DH, Sinoway LI, Leuenberger UA, Amassian VE (2000) Magnetic stimulation of the human motor cortex evokes skin sympathetic nerve activity. J Appl Physiol 88:126–134

    Article  PubMed  CAS  Google Scholar 

  • Staines WR, Brooke JD, Cheng J, Misiaszek JE, MacKay WA (1997) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. I. Kinaesthetic task demands. Exp Brain Res 115:147–155

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Hand GA, Johnson DG, Seals DR (1992) Augmented forearm vasoconstriction during dynamic exercise in healthy older men. Circulation 86:1789–1799

    Article  PubMed  CAS  Google Scholar 

  • Tinazzi M, Zanette G, La Porta F, Polo A, Volpato D, Fiaschi A, Mauguiere F (1997) Selective gating of lower limb cortical somatosensory evoked potentials (SEPs) during passive and active foot movements. Electroencephalogr Clin Neurophysiol 104:312–321

    Article  PubMed  CAS  Google Scholar 

  • Tinazzi M, Fiaschi A, Mauguiere F, Manganotti P, Polo A, Bonato C, Zanette G (1998) Effects of voluntary contraction on tibial nerve somatosensory evoked potentials: gating of specific cortical responses. Neurology 50:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Zhou S (2000) Chronic neural adaptations to unilateral exercise: mechanisms of cross education. Exerc Sports Sci Rev 28:177–184

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP 15K16420.

Author information

Authors and Affiliations

Authors

Contributions

TT, HY and SO conceived and designed the research. KS and MM conducted the experiments. TT and KS analyzed the data. TT wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Terumasa Takahara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahara, T., Yamaguchi, H., Seki, K. et al. Effect of circulatory system response to motor control in one-sided contractions. Eur J Appl Physiol 118, 1773–1780 (2018). https://doi.org/10.1007/s00421-018-3907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3907-y

Keywords

Navigation