Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants

Abstract

Purpose

The aim of this study was to expand exercise testing in handcycling by (1) examining different approaches to determine lactate kinetics in handcycling under various exercise modalities and (2) identifying relationships between parameters of lactate kinetics and selected performance measures.

Methods

Twelve able-bodied nationally competitive triathletes performed a familiarisation, a sprint test, an incremental step test, and a continuous load trial at a power output corresponding to a lactate concentration (La) of 4 mmol l−1 (PO4) in a racing handcycle that was mounted on an ergometer. During the tests, La and heart rate (HR) were determined. As performance measures, maximal power output during the 15-s All-Out sprint test (POmax,AO15) and maximal power output during the incremental test (POmax,ST) were determined. As physiological parameters, coefficients of lactate kinetics, maximal lactate accumulation rate (\(\dot {V}\)Lamax), maximal La following the sprint test and incremental test (Lamax,AO15, Lamax,ST) and the increase in La within the last 20 min of the continuous trial (LaCrit,CT) were determined.

Results

Mean values of POmax,AO15 (545.6 ± 69.9 W), POmax,ST (131.3 ± 14.9 W), PO4 (86.73 ± 12.32 W), \(\dot {V}\)Lamax (0.45 ± 0.11 mmol l−1 s−1), Lamax,AO15 (6.64 ± 1.32 mmol l−1), Lamax,ST (9.64 ± 2.24 mmol l−1) and LaCrit,CT (0.74 ± 0.74 mmol l−1) were in accordance to literature. \(\dot {V}\)Lamax was positively correlated with Lamax,AO15 and POmax,AO15 and negatively correlated with POmax,ST. POmax,ST was negatively correlated with Lamax,AO15. PO4 was negatively correlated with Lamax,ST.

Conclusions

\(\dot {V}\)Lamax was identified as a promising parameter for exercise testing in handcycling that can be supplemented by other parameters describing lactate kinetics following a sprint test.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

A :

Amplitude parameter describing post-exercise lactate kinetics of the 15-s All-Out test

ATP:

Adenosine triphosphate

BMI:

Body mass index (kg m− 2)

b ST :

Increase in power output with each step of the incremental step test (W 5 min− 1)

c 1 :

Linear coefficient of the quadratic polynomial for the incremental step test

c 2 :

Quadratic coefficient of the quadratic polynomial for the incremental step test

CSA:

Cross-sectional area

ESC:

European Society of Cardiology

H+ :

Proton (H+-Ion)

HC:

Handcycling

HIIT:

High-intensity interval training

HR:

Heart rate (min−1)

k 1 :

Velocity constant describing the exchange of lactate from the previously active muscles

k 2 :

Velocity constant describing the removal of lactate during passive recovery

La:

Lactate concentration (mmol·l−1)

La(0):

Lactate concentration at rest

La(PO):

Lactate concentration for a given power output

La(t):

Lactate concentration at a given time

LaCrit,CT :

Maximal increase in lactate concentration within the last 20 min of the continuous load test

Lamax,AO15 :

Maximal lactate concentration after the 15-s All-Out sprint trial

Lamax,CT :

Maximal lactate concentration within the continuous load test

Lamax,ST :

Maximal lactate concentration within the incremental step test

LT:

Lactate threshold

MCT:

Monocarboxylate transporter

MICT:

Moderate intensity continuous training

MLSS:

Maximal lactate steady state

MV:

Mean value

P :

Probability of committing a type I error

PCr:

Creatine phosphate

PFK:

Phosphofructokinase

PO:

Power output (W)

PO4 :

Power output equivalent to a lactate concentration of 4 mmol·l−1

POlast :

Power output within the last (unfinished) step of the incremental step test

POmax,AO15 :

Maximal power output within the 15-s All-Out test

POmax,ST :

Maximal power output within the incremental step test

r :

Correlation coefficient

R 2 :

Determination coefficient (%)

RPE:

Rate of perceived exertion

SCI:

Spinal cord injury

SD:

Standard deviation

t alac :

Period at the beginning of exercise for which no lactate formation is assumed (s)

t last :

Exercise duration within the last (unfinished) step of the incremental step test (s)

t ST :

Prescribed duration of each step during the incremental step test (5 min ≙ 300 s) (s)

TE:

Technical error (%)

\(\dot {V}\)Lamax :

Maximal lactate accumulation rate (lactic power) (mmol·l−1·s−1)

\(\dot {V}\)O2max:

Maximal oxygen consumption (aerobic power) (ml min−1 kg−1)

References

  1. Abel T, Schneider S, Platen P, Strüder HK (2006) Performance diagnostics in handbiking during competition. Spinal Cord 44(4):211–216. https://doi.org/10.1038/sj.sc.3101845

    Article  PubMed  CAS  Google Scholar 

  2. Abel T, Burkett B, Schneider S, Lindschulten R, Strüder HK (2010) The exercise profile of an ultra-long handcycling race: the Styrkeproven experience. Spinal Cord 48(12):894–898. https://doi.org/10.1038/sc.2010.40

    Article  PubMed  CAS  Google Scholar 

  3. Abel T, Burkett B, Thees B, Schneider S, Askew CD, Strüder HK (2015) Effect of three different grip angles on physiological parameters during laboratory handcycling test in able-bodied participants. Front Physiol 6:331. https://doi.org/10.3389/fphys.2015.00331

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beneke R (2003a) Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol 88(4–5):361–369. https://doi.org/10.1007/s00421-002-0713-2

    Article  PubMed  CAS  Google Scholar 

  5. Beneke R (2003b) Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 89(1):95–99. https://doi.org/10.1007/s00421-002-0783-1

    Article  PubMed  CAS  Google Scholar 

  6. Beneke R, Hutler M, Jung M, Leithauser RM (2005) Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol (Bethesda Md 1985) 99(2):499–504. https://doi.org/10.1152/japplphysiol.00062.2005

    Article  CAS  Google Scholar 

  7. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  PubMed  CAS  Google Scholar 

  8. Corrado D, Pelliccia A, Bjornstad HH, Vanhees L, Biffi A, Borjesson M, Panhuyzen-Goedkoop N, Deligiannis A, Solberg E, Dugmore D, Mellwig KP, Assanelli D, Delise P, van-Buuren F, Anastasakis A, Heidbuchel H, Hoffmann E, Fagard R, Priori SG, Basso C, Arbustini E, Blomstrom-Lundqvist C, McKenna WJ, Thiene G (2005) Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J 26(5):516–524. https://doi.org/10.1093/eurheartj/ehi108

    Article  PubMed  Google Scholar 

  9. Faupin A, Gorce P, Campillo P, Thevenon A, Remy-Neris O (2006) Kinematic analysis of handbike propulsion in various gear ratios: implications for joint pain. Clin Biomech (Bristol Avon) 21(6):560–566. https://doi.org/10.1016/j.clinbiomech.2006.01.001

    Article  CAS  Google Scholar 

  10. Faupin A, Gorce P, Watelain E, Meyer C, Thevenon A (2010) A biomechanical analysis of handcycling: a case study. J Appl Biomech 26(2):240–245

    Article  PubMed  Google Scholar 

  11. Freund H, Gendry P (1978) Lactate kinetics after short strenuous exercise in man. Eur J Appl Physiol 39(2):123–135. https://doi.org/10.1007/BF00421717

    Article  CAS  Google Scholar 

  12. Hauser T, Adam J, Schulz H (2014) Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model 11:25. https://doi.org/10.1186/1742-4682-11-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6(3):117–130. https://doi.org/10.1055/s-2008-1025824

    Article  PubMed  CAS  Google Scholar 

  14. Heck H, Schulz H, Bartmus U (2003) Diagnostics of anaerobic power and capacity. Eur J Sport Sci 3(3):1–23. https://doi.org/10.1080/17461390300073302

    Article  Google Scholar 

  15. Hultman E, Greenhaff PL, Ren JM, Söderlund K (1991) Energy metabolism and fatigue during intense muscle contraction. Biochem Soc Trans 19(2):347–353

    Article  PubMed  CAS  Google Scholar 

  16. Janssen TW, Dallmeijer AJ, van der Woude LH (2001) Physical capacity and race performance of handcycle users. J Rehabil Res Dev 38(1):33–40

    PubMed  CAS  Google Scholar 

  17. Jeacocke NA, Burke LM (2010) Methods to standardize dietary intake before performance testing. Int J Sport Nutr Exerc Metab 20(2):87–103. https://doi.org/10.1123/ijsnem.20.2.87

    Article  PubMed  CAS  Google Scholar 

  18. Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol 517(3):633–642. https://doi.org/10.1111/j.1469-7793.1999.0633s.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Leicht C, Perret C (2008) Comparison of blood lactate elimination in individuals with paraplegia and able-bodied individuals during active recovery from exhaustive exercise. J Spinal Cord Med 31(1):60–64

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mader A (2003) Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol 88(4–5):317–338. https://doi.org/10.1007/s00421-002-0676-3

    Article  PubMed  CAS  Google Scholar 

  21. Manunzio C, Mester J, Kaiser W, Wahl P (2016) Training intensity distribution and changes in performance and physiology of a 2nd place finisher team of the race across America over a 6 month preparation period. Front Physiol 7:642. https://doi.org/10.3389/fphys.2016.00642

    Article  PubMed  PubMed Central  Google Scholar 

  22. Medbø JI, Toska K (2001) Lactate release, concentration in blood, and apparent distribution volume after intense bicycling. JJP 51(3):303–312. https://doi.org/10.2170/jjphysiol.51.303

    Article  PubMed  Google Scholar 

  23. Messonnier L, Freund H, Denis C, Feasson L, Lacour J-R (2006) Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance. Int J Sports Med 27(1):60–66. https://doi.org/10.1055/s-2005-837507

    Article  PubMed  CAS  Google Scholar 

  24. Moxnes JF, Sandbakk O (2012) The kinetics of lactate production and removal during whole-body exercise. Theor Biol Med Model 9:7. https://doi.org/10.1186/1742-4682-9-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Powers SK, Beadle RE, Mangum M (1984) Exercise efficiency during arm ergometry: effects of speed and work rate. J Appl Physiol Respir Environ Exerc Physiol 56(2):495–499

    PubMed  CAS  Google Scholar 

  26. Reiser M, Meyer T, Kindermann W, Daugs R (2000) Transferability of workload measurements between three different types of ergometer. Eur J Appl Physiol 82(3):245–249. https://doi.org/10.1007/s004210050678

    Article  PubMed  CAS  Google Scholar 

  27. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516. https://doi.org/10.1152/ajpregu.00114.2004

    Article  CAS  Google Scholar 

  28. Schantz P, Randall-Fox E, Hutchison W, Tydén A, Astrand PO (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117(2):219–226

    Article  PubMed  CAS  Google Scholar 

  29. Schoenmakers P, Reed K, van der Woude L, Hettinga FJ (2016) High intensity interval training in handcycling: the effects of a 7 week training intervention in able-bodied men. Front Physiol 7:638. https://doi.org/10.3389/fphys.2016.00638

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seiler S (2010) What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform 5(3):276–291

    Article  PubMed  Google Scholar 

  31. Smekal G, Duvillard SP von, Pokan R, Hofmann P, Braun WA, Arciero PJ, Tschan H, Wonisch M, Baron R, Bachl N (2012) Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals. Eur J Appl Physiol 112(8):3079–3086. https://doi.org/10.1007/s00421-011-2283-7

    Article  PubMed  CAS  Google Scholar 

  32. Smith PM, Price MJ, Doherty M (2001) The influence of crank rate on peak oxygen consumption during arm crank ergometry. J Sports Sci 19(12):955–960. https://doi.org/10.1080/026404101317108453

    Article  PubMed  CAS  Google Scholar 

  33. Smith PM, Doherty M, Price MJ (2006) The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry. Int J Sports Med 27(3):199–204. https://doi.org/10.1055/s-2005-837620

    Article  PubMed  CAS  Google Scholar 

  34. Smith PM, Doherty M, Price MJ (2007) The effect of crank rate strategy on peak aerobic power and peak physiological responses during arm crank ergometry. J Sports Sci 25(6):711–718. https://doi.org/10.1080/02640410600831955

    Article  PubMed  Google Scholar 

  35. Taoutaou Z, Granier P, Mercier B, Mercier J, Ahmaidi S, Prefaut C (1996) Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol 73(5):465–470. https://doi.org/10.1007/BF00334425

    Article  CAS  Google Scholar 

  36. van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxford England) 199(4):499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x

    Article  CAS  Google Scholar 

  37. Wahl P, Yue Z, Zinner C, Bloch W, Mester J (2011) A mathematical model for lactate transport to red blood cells. J Physiol Sci JPS 61(2):93–102. https://doi.org/10.1007/s12576-010-0125-8

    Article  PubMed  CAS  Google Scholar 

  38. Zeller S, Abel T, Smith PM, Strüder HK (2015) Influence of noncircular chainring on male physiological parameters in hand cycling. J Rehabil Res Dev 52(2):211–220. https://doi.org/10.1682/JRRD.2014.03.0070

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants who took part in this study for their patience and commitment. There were no funding sources for the present article.

Author information

Affiliations

Authors

Contributions

OJQ and TA conceived and designed research. OJQ conducted experiments. TA conducted medical background during experiments. OJQ contributed new analytical tools. OJQ analyzed data. OJQ wrote the manuscript. TA, TF and SZ reviewed the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Oliver J. Quittmann.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Communicated by Guido Ferretti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quittmann, O.J., Abel, T., Zeller, S. et al. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants. Eur J Appl Physiol 118, 1493–1505 (2018). https://doi.org/10.1007/s00421-018-3879-y

Download citation

Keywords

  • Exercise testing
  • Diagnostics
  • \(\dot {V}\)Lamax
  • Lactic power
  • Lactate threshold
  • Paralympic sport