Skip to main content
Log in

The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Evidence for performance decrements following prolonged static stretching (SS) has led to a paradigm shift in stretching routines within a warm-up. Rather than SS, dynamic stretching (DS) and dynamic activity (DA) have replaced SS within warm-up routines. The objective of the present study was to compare the effect of differing lower limb SS durations (30 [SS30s], 60 [SS60s] or 120 s [SS120s] of SS per muscle group or no-stretch control) within a comprehensive warm-up protocol consisting of aerobic activity, DS and DA. Sixteen male participants completed the four stretching conditions in a randomized order, after a 5-min low-intensity (cycle) warm-up and before a DS/DA component on separate days. Tests included passive hip and knee ranges of motion (ROM), maximum voluntary knee extensor/flexor force, force produced at 100 ms (F100), vertical jump height and evoked knee extensor contractile properties. For hip flexion (hamstrings) ROM, SS120s provided the largest increase (5.6–11.7%) followed by SS60s (4.3–11.4%), control (4.4–10.6%) and SS30s (3.6–11.1%). For knee flexion (quadriceps) ROM, SS30s provided the largest increase (9.3–18.2%) followed by SS120s (6.5–16.3%), SS60s (7.2–15.2%) and control (6.3–15.2%). There were decreases in quadriceps F100 following SS in SS120s (29.6%) only. There were increases in vertical jump performance in the control (6.2%), SS60s (4.6%) and SS30s (3.3%). While 120 s SS per muscle increased ROM, even within a comprehensive warm-up routine, it also elicited notable performance decrements. However, moderate durations of SS were observed to improve ROM whilst either having negligible or beneficial (but not detrimental) effects on specific aspects of athletic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DA:

Dynamic activity

DS:

Dynamic stretching

EMD:

Electromechanical delay

EMG:

Electromyography

ES:

Effect size

F100:

Peak force produced within first 100 ms

Hz:

Hertz

ICC:

Intraclass correlation coefficient

ITT:

Interpolated twitch technique

MTU:

Musculotendinous unit

MVIC:

Maximal voluntary isometric contraction

PAP:

Post-activation potentiation

ROM:

Range of motion

SS:

Static stretching

SS30s:

Static stretching intervention for 30 s

SS60s:

Static stretching intervention for 60 s

SS120s:

Static stretching intervention for 120 s

VA%:

Percent voluntary activation

References

  • American Psychological Association (2001) Publication Manual of the American Psychological Association, 5th edn. American Psychological Association, Washington, DC

    Google Scholar 

  • Asai T (2002) Confidence in statistical analysis. Br J Anaesth 89(6):807–810

    Article  PubMed  CAS  Google Scholar 

  • Avela J, Kyröläinen H, Komi PV (1999) Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol 86(4):1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Avela J, Finni T, Liikavainio T, Niemelä E, Komi PV (2004) Neural and mechanical responses of the triceps surae muscle group after 1 h of repeated fast passive stretches. J Appl Physiol 96(6):2325–2332

    Article  PubMed  Google Scholar 

  • Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS (2009) Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 23(1):304–308

    Article  PubMed  Google Scholar 

  • Beckett JRJ, Schneiker KT, Wallman KE, Dawson BT, Guelfi KJ (2009) Effects of static stretching on repeated sprint and change of direction performance. Med Sci Sports Exerc 41:444–450

    Article  PubMed  Google Scholar 

  • Behm DG (2009) The interpolated twitch technique may be valid and reliable but limited. J Appl Physiol 107(1):362

    PubMed  Google Scholar 

  • Behm DG, Chaouachi A (2011) A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol 111(11):2633–2651

    Article  PubMed  Google Scholar 

  • Behm DG, Kibele A (2007) Effects of differing intensities of static stretching on jump performance. Eur J Appl Physiol 101(5):587–594

    Article  PubMed  Google Scholar 

  • Behm DG, St-Pierre DMM, Perez D (1996) Muscle inactivation: an assessment of the interpolated twitch technique. J Appl Physiol 81(5):2267–2273

    Article  PubMed  CAS  Google Scholar 

  • Behm DG, Button DC, Butt JC (2001) Factors affecting force loss with prolonged stretching. Can J Appl Physiol 26(3):262–272

    Article  Google Scholar 

  • Behm DG, Whittle J, Button D, Power K (2002) Intermuscle differences in activation. Muscle Nerve 25:236–243

    Article  PubMed  CAS  Google Scholar 

  • Behm DG, Bambury A, Cahill F, Power K (2004) Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sports Exerc 36:1397–1402

    Article  PubMed  Google Scholar 

  • Behm DG, Peach A, Maddigan M, Aboodarda SJ, DiSanto MC, Button DC, Maffiuletti NA (2013) Massage and stretching reduce spinal reflex excitability without affecting twitch contractile properties. J Electromyogr Kinesiol 23(5):1215–1221

    Article  PubMed  Google Scholar 

  • Behm DG, Blazevich AD, Kay AJ, McHugh M (2016) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 41:1–11

    Article  PubMed  Google Scholar 

  • Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippoid OCJ, Woods JJ (1983) Contractile speed and EMG changes during fatigue or sustained maximal voluntary contractions. J Neurophysiol 50:313–324

    Article  PubMed  CAS  Google Scholar 

  • Blazevich AJ, Gill ND, Kvorning T, Kay AD, Goh A, Hilton B, Drinkwater EJ, Behm DG (2018) No effect of muscle stretching within a full, dynamic warm-up on athletic performance. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001539

    Article  PubMed  Google Scholar 

  • Bradley PS, Olsen PD, Portas MD (2007) The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res 21(1):223–226

    Article  PubMed  Google Scholar 

  • Cé E, Margonato V, Casasco M, Veicsteinas A (2008) Effects of stretching on maximal anaerobic power: the roles of active and passive warm-ups. J Strength Cond Res 22(3):794–800. https://doi.org/10.1519/JSC.0b013e31816a4353

    Article  PubMed  Google Scholar 

  • Cè E, Rampichini S, Maggioni MA, Veicsteinas A, Merati G (2009) Effects of passive stretching on post-activation potentiation and fibre conduction velocity of biceps brachii muscle. Sport Sci Health 4:43–50

    Article  Google Scholar 

  • Chaouachi A, Chamari K, Wong P, Castagna C, Chaouachi M, Moussa-Chamari I, Behm DG (2008) Stretch and sprint training reduces stretch-induced sprint performance deficits in 13- to 15-year-old youth. Eur J Appl Physiol 104(3):515

    Article  PubMed  CAS  Google Scholar 

  • Chaouachi A, Castagna C, Chtara M, Brughelli M, Turki O, Galy O, Chamari K, Behm DG (2010) Effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. J Strength Cond Res 24:2001–2011

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Covert CA, Alexander MP, Petronis JJ, Davis DS (2010) Comparison of ballistic and static stretching on hamstring muscle length using an equal stretching dose. J Strength Cond Res 24:3008–3014

    Article  PubMed  Google Scholar 

  • Drinkwater EJ, Pritchett EJ, Behm DG (2007) Effect of instability and resistance on unintentional squat-lifting kinetics. Int J Sports Physiol Perform 2:400–413

    Article  PubMed  Google Scholar 

  • Ebben WP, Blackard DO (2001) Strength and conditioning practices of National Football League strength and conditioning coaches. J Strength Cond Res 15(1):48–58

    PubMed  CAS  Google Scholar 

  • Ebben WP, Carroll RM, Simenz CJ (2004) Strength and conditioning practices of National Hockey League strength and conditioning coaches. J Strength Cond Res 18(4):889–897

    PubMed  Google Scholar 

  • Ebben WP, Hintz MJ, Simenz CJ (2005) Strength and conditioning practices of Major League Baseball strength and conditioning coaches. J Strength Cond Res 19(3):538–546

    PubMed  Google Scholar 

  • Esposito F, Limonta E, Ce E, Gobbo M, Veicsteinas A, Orizio C (2009) Electrical and mechanical response of finger flexor muscles during voluntary isometric contractions in elite rock-climbers. Eur J Appl Physiol 105:81–92

    Article  PubMed  Google Scholar 

  • Fletcher IM, Anness R (2007) The acute effects of combined static and dynamic stretch protocols on 50-m sprint performance in track-and-field athletes. J Strength Cond Res 21(3):784–787

    PubMed  Google Scholar 

  • Fletcher IM, Jones B (2004) The effect of different warm-up stretch protocols on 20-m sprint performance in trained rugby union players. J Strength Cond Res 18(4):885–888

    PubMed  Google Scholar 

  • Fletcher IM, Monte-Colombo MM (2010) An investigation into the possible physiological mechanisms associated with changes in performance related to acute responses to different preactivity stretch modalities. Appl Physiol Nutr Metab 35:27–34

    Article  PubMed  Google Scholar 

  • Fowles JR, Sale DG, MacDougall JD (2000) Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol 89(3):1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Gardiner PF (2001) Neuromuscular aspects of physical activity. Human Kinetics Canada, Windsor ON

    Google Scholar 

  • Gelen E (2010) Acute effects of different warm-up methods on sprint, slalom dribbling, and penalty kick performance in soccer players. J Strength Cond Res 24(4):950–956

    Article  PubMed  Google Scholar 

  • Grabow L, Young JD, Alcock LR, Quigley PJ, Byrne JM, Granacher U, Škarabot J, Behm DG (2017) Higher quadriceps roller massage forces do not amplify range of motion increases or impair strength and jump performance. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000001906

    Article  PubMed  Google Scholar 

  • Herda TJ, Cramer JT, Ryan ED, McHugh MP, Stout JR (2008) Acute effects of static versus dynamic stretching on isometric peak torque, electromyography and mechanomyography of the biceps femoris muscle. J Strength Cond Res 22(3):809–817

    Article  PubMed  Google Scholar 

  • Hodgson DD, Quigley PJ, Whitten JHD, Reid JC, Behm DG (2017) Roller massage applied at 10-min intervals prolongs active range of motion improvements up to 30-min without impairing performance. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002271

    Article  PubMed  Google Scholar 

  • Holt B, Lambourne K (2008) The impact of different warm-up protocols on vertical jump performance in male collegiate athletes. J Strength Cond Res 1:226–229

    Article  Google Scholar 

  • Hopkins W, Marshall S, Batterham A, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–12

    Article  PubMed  Google Scholar 

  • Hough PA, Ross EZ, Howatson G (2009) Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. J Strength Cond Res 23:507–512

    Article  PubMed  Google Scholar 

  • Houston ME, Grange RW (1990) Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Appl Physiol 68(7):908–913

    Article  CAS  Google Scholar 

  • Jaggers JR, Swank AM, Frost KL, Lee CD (2008) The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power. J Strength Cond Res 22(6):1844–1849

    Article  PubMed  Google Scholar 

  • Kay AD, Blazevich AJ (2009) Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 106:1249–1256

    Article  PubMed  Google Scholar 

  • Kay AD, Blazevich AJ (2012) Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc 44(1):154–164

    Article  PubMed  Google Scholar 

  • Kay AD, Husbands-Beasley J, Blazevich AJ (2015) Effects of contract-relax, static stretching, and isometric contractions on muscle-tendon mechanics. Med Sci Sports Exerc 47(10):2181–2190

    Article  PubMed  Google Scholar 

  • Kay AD, Dods S, Blazevich AJ (2016) Acute effects of contract-relax (CR) stretch versus a modified CR technique. Eur J Appl Physiol 116:611–621

    Article  PubMed  Google Scholar 

  • Kistler BM, Walsh MS, Horn TS, Cox RH (2010) The acute effects of static stretching on the sprint performance of collegiate men in the 60- and 100-m dash after a dynamic warm-up. J Strength Cond Res 24:2280–2284

    Article  PubMed  Google Scholar 

  • Kubo K, Kanehisa HY, Fukunaga T (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 90:520–527

    Article  PubMed  CAS  Google Scholar 

  • Little T, Williams AG (2006) Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res 20:203–207

    PubMed  Google Scholar 

  • Ludbrook J, Dudley H (1998) Why permutation tests are superior to T and F tests in biomedical research. Am Statistician 52(2):127–132

    Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(Pt 1):291–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnusson SP, Aagard P, Simonsen E, Bojsen-Møller F (1998) A biomechanical evaluation of cyclic and static stretch in human skeletal muscle. Int J Sports Med 19(05):310–316

    Article  PubMed  CAS  Google Scholar 

  • Manoel ME, Harris-Love MO, Danoff JV, Miller TA (2008) Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res 22:1528–1534

    Article  PubMed  Google Scholar 

  • Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA (2008) The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol 586(1):97–106

    Article  PubMed  CAS  Google Scholar 

  • Murphy JR, DiSanto MC, Alkanani T, Behm DG (2010) Aerobic activity before and following short duration static stretching improves range of motion and performance versus a traditional warm-up. Appl Physiol Nutr Metab 35:679–690

    Article  PubMed  Google Scholar 

  • Nelson AG, Kokkonen J (2001) Acute ballistic muscle stretching inhibits maximal strength performance. Res Q Exerc Sport 72(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Nuzzo JL, Barry BK, Gandevia SC, Taylor JL (2016) Acute strength training increases responses to stimulation of corticospinal axons. Med Sci Sports Exerc 48:139–150

    Article  PubMed  Google Scholar 

  • O’Sullivan K, Murray E, Sainsbury D (2009) The effect of warmup, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC Musculoskelet Disord 10:37–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradisis GP, Pappas PT, Theodorou AS, Zacharogiannis EG, Skordilis EK, Smirniotou AS (2014) Effects of static and dynamic stretching on sprint and jump performance in boys and girls. J Strength Cond Res 28(1):154–160

    Article  PubMed  Google Scholar 

  • Power K, Behm D, Farrell C, Carroll M, Young W (2004) An acute bout of static stretching: effects on force and jumping performance. Med Sci Sports Exerc 36:1389–1396

    Article  PubMed  Google Scholar 

  • Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Costa PB, Cramer JT (2008) The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther 38(10):632–639

    Article  PubMed  Google Scholar 

  • Ryan ED, Herda TJ, Costa PB, Defreitas JM, Beck TW, Stout J, Cramer JT (2009) Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J Sports Sci 27(9):957–961

    Article  PubMed  Google Scholar 

  • Safran M, Seaber A, Garrett W (1989) Warm-up and muscular injury prevention: an update. Sports Med 8:239–249

    Article  PubMed  CAS  Google Scholar 

  • Samson M, Button DC, Chaouachi A, Behm DG (2012) Effects of dynamic and static stretching within general and activity specific warm-up protocols. J Sports Sci Med 11(2):279

    PubMed  PubMed Central  Google Scholar 

  • Simenz CJ, Dugan CA, Ebben WP (2005) Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J Strength Cond Res 19(3):495–504

    PubMed  Google Scholar 

  • Smith C (1994) The warm-up procedure: to stretch or not to stretch: a brief review. J Orthop Sports Phys Ther 19:12–17

    Article  PubMed  CAS  Google Scholar 

  • Taylor KL, Sheppard JM, Lee H, Plummer N (2009) Negative effect of static stretching restored when combined with a sport specific warm-up component. J Sci Med Sport 12(6):657–661

    Article  PubMed  Google Scholar 

  • Thompson AG, Kackley T, Palumbo MA, Faigenbaum AD (2007) Acute effects of different warm-up protocols with and without a weighted vest on jumping performance in athletic women. J Strength Cond. Res 21(1):52

    Article  Google Scholar 

  • Torres EM, Kraemer WJ, Vingren JL, Volek JS, Hatfield DL, Spiering BA, Häkkinen K (2008) Effects of stretching on upper-body muscular performance. J Strength Cond Res 22(4):1279–1285

    Article  PubMed  Google Scholar 

  • Trajano GS, Seitz L, Nosaka K, Blazevich AJ (2013) Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors. J Appl Physiol 2013 115:212–218

    Article  PubMed  Google Scholar 

  • Trajano GS, Nosaka K, Seitz LB, Blazevich AJ (2014a) Intermittent stretch reduces force and central drive more than continuous stretch. Med Sci Sports Exerc 46(5):902–910

    Article  PubMed  Google Scholar 

  • Trajano GS, Seitz LB, Nosaka K, Blazevich AJ (2014b) Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol 117:1486–1492

    Article  PubMed  Google Scholar 

  • Trajano GS, Nosaka K, Blazevich AJ (2017) Neurophysiological mechanisms underpinning stretch-induced force loss. Sports Med 47(8):1531–1541

    Article  PubMed  Google Scholar 

  • Turki O, Chaouachi A, Drinkwater EJ, Chtara M, Chamari K, Amri M, Behm DG (2011) Ten minutes of dynamic stretching is sufficient to potentiate vertical jump performance characteristics. J Strength Cond Res 25(9):2453–2463

    Article  PubMed  Google Scholar 

  • Unick J, Kieffer HS, Cheesman W, Feeney A (2005) The acute effects of static and ballistic stretching on vertical jump performance in trained women. J Strength Cond Res 19(1):206–212

    PubMed  Google Scholar 

  • Wallmann HW, Mercer JA, McWhorter JW (2005) Surface electromyographic assessment of the effects of static stretching of the gastrocnemius on vertical jump performance. J Strength Cond Res 19:684–688

    PubMed  Google Scholar 

  • Winchester JB, Nelson AG, Landin D, Young MA, Schexnayder IC (2008) Static stretching impairs sprint performance in collegiate track and field athletes. J Strength Cond Res 22(1):13–19

    Article  PubMed  Google Scholar 

  • Young W, Behm DG (2003) Effects of running, static stretching and practice jumps on explosive force production and jumping performance. J Sports Med Phys Fit 43(1):21

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of Dr. Thamir Alkanani for his organization and preparation of the laboratory and equipment. The authors declare that the results of the study are presented clearly, honestly and without fabrication, falsification, or inappropriate data manipulation. There were no conflicts of interest of the authors with the information obtained within the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JCR: formulated research question and experimental design, collected and analyzed data and wrote the manuscript. RMG, JDY, DDH: collected and analyzed data and reviewed the manuscript. AB: formulated research question and experimental design, reviewed and revised manuscript. DGB: formulated research question and experimental design, supervised the data collection and analysis and reviewed and revised manuscript.

Corresponding author

Correspondence to David G. Behm.

Ethics declarations

Conflict of interest

There are no conflicts of interests with the authors of this paper.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, J.C., Greene, R., Young, J.D. et al. The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties. Eur J Appl Physiol 118, 1427–1445 (2018). https://doi.org/10.1007/s00421-018-3874-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3874-3

Keywords

Navigation