Skip to main content

Comparison of running and cycling economy in runners, cyclists, and triathletes

Abstract

Purpose

Exercise economy is one of the main physiological factors determining performance in endurance sports. Running economy (RE) can be improved with running-specific training, while the improvement of cycling economy (CE) with cycling-specific training is controversial. We investigated whether exercise economy reflects sport-specific skills/adaptations or is determined by overall physiological factors.

Methods

We compared RE and CE in 10 runners, 9 cyclists and 9 triathletes for running at 12 km/h and cycling at 200 W. Gross rates of oxygen consumption and carbon dioxide production were collected and used to calculate gross metabolic rate in watts for both running and cycling.

Results

Runners had better RE than cyclists (917 ± 107 W vs. 1111 ± 159 W) (p < 0.01). Triathletes had intermediate RE values (1004 ± 98 W) not different from runners or cyclists. CE was not different (p = 0.20) between the three groups (runners: 945 ± 60 W; cyclists: 982 ± 44 W; triathletes: 979 ± 54 W).

Conclusion

RE can be enhanced with running-specific training, but CE is independent of cycling-specific training.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ANOVA:

Analysis of variance

CE:

Cycling economy

RE:

Running economy

RER:

Respiratory exchange ratio

RPM:

Revolutions per minute

References

  • Arellano CJ, Kram R (2014) Partitioning the metabolic cost of human running: a task-by-task approach. Integr Comp Biol 54(6):1084–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes KR, Kilding AE (2015) Running economy: measurement, norms and determining factors. Sports Med. https://doi.org/10.1186/s40798-015-0007-y

    PubMed  Article  Google Scholar 

  • Barnes KR, Mcguigan MR, Kilding AE (2014) Lower-body determinants of running economy in male and female distance runners. J Strength Cond Res 28(5):1289–1297

    Article  PubMed  Google Scholar 

  • Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84

    Article  PubMed  Google Scholar 

  • Beneke R, Hütler M (2005) The effect of training on running economy and performance in recreational athletes. Med Sci Sports Exerc 37(10):1794–1799

    Article  PubMed  Google Scholar 

  • Bijker K, De Groot G, Hollander A (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87(6):556–561

    Article  PubMed  CAS  Google Scholar 

  • Bosco C, Montanari G, Ribacchi R, Giovenali P, Latteri F, Iachelli G, Faina M, Colli R, Dal Monte A, La Rosa M, Cortili G, Saibene F (1987) Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur J Appl Physiol 56(2):138–143

    Article  CAS  Google Scholar 

  • Bransford DR, Howley ET (1977) Oxygen cost of running in trained and untrained men and women. Med Sci Sports Exerc 9(1):41–44

    Article  CAS  Google Scholar 

  • Brockway JM (1987) Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr 41(6):463–471

    PubMed  CAS  Google Scholar 

  • Calbet JA, Holmberg H-C, Rosdahl H, Van Hall G, Jensen-Urstad M, Saltin B (2005) Why do arms extract less oxygen then legs during exercise? Am J Physiol Regul Intergr Comp Physiol 289(5):1448–1458

    Article  CAS  Google Scholar 

  • Cavanagh PR, Kram R (1985) The efficiency of human movement—a statement of the problem. Med Sci Sports Exerc 17(3):304–308

    PubMed  CAS  Google Scholar 

  • Conley DL, Krahenbuhl GS (1980) Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 12(5):357–360

    Article  PubMed  CAS  Google Scholar 

  • Conley DL, Krahenbuhl GS, Burkett LN, Millar AL (1984) Following Steve Scott: physiological changes accompanying training. Phys Sports Med 12(1):103–106

    Article  Google Scholar 

  • Coyle EF, Coggan AR, Hopper K, Walters TJ (1988) Determinants of endurance in well-trained cyclists. J Appl Physiol 64(6):2622–2630

    Article  PubMed  CAS  Google Scholar 

  • Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 24(7):782–788

    Article  PubMed  CAS  Google Scholar 

  • Daniels JT (1985) A physiologist’s view of running economy. Med Sci Sports Exerc 17(3):332–338

    Article  PubMed  CAS  Google Scholar 

  • Daniels J, Scardina N, Foley P (1984) VO2 submax during five modes of exercise. In: Bachl N, Prokop L, Sucket R (eds) Proceedings of the world congress on sports medicine. Urban and Schwartzenberg, Vienna, pp 604–615

    Google Scholar 

  • Ettema G, Loras HW (2009) Efficiency in cycling: a review. Eur J Appl Physiol 106(1):1–14

    Article  PubMed  Google Scholar 

  • Fernandes RJ, Billat VL, Cruz AC, Colaço PJ, Cardoso CS, Vilas-Boas JP (2006) Does net energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J Sports Med Phys Fitness 46(3):373–380

    PubMed  CAS  Google Scholar 

  • Fletcher JR, Esau SP, MacIntosh BR (2009) Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol 107(6):1918–1922

    Article  PubMed  Google Scholar 

  • Franch JS, Madsen KK, Djurhuus MK, Pedersen PK (1998) Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 30(8):1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Hintzy F, Mourot L, Perrey S, Tordi N (2005) Effect of endurance training on different mechanical efficiency indices during submaximal cycling in subjects unaccustomed to cycling. Can J Appl Physiol 30(5):520–528. https://doi.org/10.1139/h05-138

    Article  PubMed  Google Scholar 

  • Hoogkamer W, Kipp S, Spiering BA, Kram R (2016) Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc 48(11):2175–2180

    Article  PubMed  Google Scholar 

  • Hopker JG, Coleman DA, Wiles JD (2007) Differences in efficiency between trained and recreational cyclists. Appl Physiol Nutr Metab 32(6):1036–1042

    Article  PubMed  Google Scholar 

  • Hopker JG, Coleman DA, Passfield L (2009a) Changes in cycling efficiency during a competitive season. Med Sci Sports Exerc 41(4):912–919

    Article  PubMed  Google Scholar 

  • Hopker JG, Passfield L, Coleman D, Jobson S, Edwards L, Carter H (2009b) The effect of training on gross efficiency in cycling: a review. Int J Sports Med 30(12):845–850

    Article  PubMed  CAS  Google Scholar 

  • Hopker JG, Coleman DA, Gregson HC, Jobson SA, Von der Haar T, Wiles J, Passfield L (2013) The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. J Appl Physiol 115(5):723–729

    Article  PubMed  Google Scholar 

  • Horowitz JF, Sidossis LS, Coyle EF (1994) High efficiency of type I muscle fibers improves performance. Int J Sports Med 15(3):152–157

    Article  PubMed  CAS  Google Scholar 

  • Hue O, Le Gallais D, Boussana A, Chollet D, Préfaut C (1999) Ventilatory responses during experimental cycle-run transition in triathletes. Med Sci Sports Exerc 31(10):1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Hue O, Le Gallais D, Chollet D, Préfaut C (2000) Ventilatory threshold and maximal oxygen uptake in present triathletes. Can J Appl Physiol 25(2):102–113

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Kaijser L (1977) Muscle adaptation to extreme endurance training in man. Acta Physiol 100(3):315–324

    Article  CAS  Google Scholar 

  • Jones AM (1998) A five year physiological case study of an Olympic runner. Br J Sports Med 32(1):39–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones AM (2006) The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coach 1(2):101–116

    Article  Google Scholar 

  • Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386

    Article  PubMed  CAS  Google Scholar 

  • Kong PW, de Heer H (2008) Anthropometric, gait and strength characteristics of Kenyan distance runners. J Sports Sci Med 7(4):499–504

    PubMed  PubMed Central  Google Scholar 

  • Kram R, Griffin TM, Donelan JM, Chang YH (1998) Force treadmill for measuring vertical and horizontal ground reaction forces. J Appl Physiol 85(2):764–769

    Article  PubMed  CAS  Google Scholar 

  • Lichtwark GA, Wilson AM (2006) Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol 209(21):4379–4388

    Article  PubMed  CAS  Google Scholar 

  • Lichtwark GA, Bougoulias K, Wilson AM (2007) Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech 40(1):157–164

    Article  PubMed  CAS  Google Scholar 

  • Losnegard T, Schäfer D, Hallén J (2014) Exercise economy in skiing and running. Front Physiol. https://doi.org/10.3389/fphys.2014.00005

    PubMed  PubMed Central  Article  Google Scholar 

  • Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C, Pérez M, Chamorro-Vina C, Foster C (2006) Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Physiol Nutr Metab 531(5):530–540

    Article  Google Scholar 

  • Lucia A, Olivan J, Bravo J, Gonzalez-Freire M, Foster C (2008) The key to top-level endurance running performance: a unique example. Br J Sports Med 42(3):172–174

    Article  PubMed  Google Scholar 

  • Lundby C, Montero D, Gehrig S, Andersson Hall U, Kaiser P, Boushel R, Meinild Lundby A-K, Kirk N, Valdivieso P, Flück M, Secher NH, Edin F, Hein T, Madsen K (2017) Physiological, biochemical, anthropometric, and biomechanical influences on exercise economy in humans. Scand J Med Sci Sports 27(12):1627–1637

    Article  CAS  Google Scholar 

  • Marsh AP, Martin PE (1993) The association between cycling experience and preferred and most economical cadences. Med Sci Sports Exerc 25(11):1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running: lessons from triathletes. Sports Med 39(3):179–206

    Article  PubMed  Google Scholar 

  • Miura H, Kitagawa K, Ishiko T (1999) Characteristic feature of oxygen cost at simulated laboratory triathlon test in trained triathletes. J Sports Med Phys Fitness 39(2):101–106

    PubMed  CAS  Google Scholar 

  • Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenbuhl GS (1995) Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc 27(3):404–409

    Article  PubMed  CAS  Google Scholar 

  • Moseley LC, Achten JE, Martin JE, Jeukendrup AE (2004) No difference in cycling efficiency between world-class and recreational cyclists. Inter J Sports Med 25(5):374–379

    Article  CAS  Google Scholar 

  • Nickleberry BL, Brooks GA (1996) No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc 28(11):1396–1401

    Article  PubMed  Google Scholar 

  • Pechar GS, McArdle WD, Katch FI, Magel JR, DeLuca J (1974) Specificity of cardiorespiratory adaptation to bicycle and treadmill training. J Appl Physiol 36(6):753–756

    Article  PubMed  CAS  Google Scholar 

  • Pette D (1998) Training effects on the contractile apparatus. Acta Physiol 162(3):367–376

    Article  CAS  Google Scholar 

  • Raichlen DA, Armstrong H, Lieberman DE (2011) Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals. J Hum Evol 60(3):299–308

    Article  PubMed  Google Scholar 

  • Ricci J, Leger L (1983) VO2max of cyclists from treadmill, bicycle ergometer and velodrome tests. Eur J Appl Physiol 50(2):283–289

    Article  CAS  Google Scholar 

  • Rønnestad BR, Hansen EA, Raastad T (2010) Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol 108(5):965–975

    Article  PubMed  Google Scholar 

  • Rud B, Secher NH, Nilsson J, Smith G, Hallén J (2014) Metabolic and mechanical involvement of arm and leg in simulated double pole skiing. Scand J Med Sci Sports 24(6):913–919

    Article  PubMed  CAS  Google Scholar 

  • Scholz MN, Bobbert MF, van Soest AJ, Clark JR, van Heerden J (2008) Running biomechanics: shorter heels, better economy. J Exp Biol 211(20):3266–3271

    Article  PubMed  CAS  Google Scholar 

  • Shaw AJ, Ingham SA, Atkinson G, Folland JP (2015) The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners. PLoS One. https://doi.org/10.1371/journal.pone.0123101

    Article  PubMed  PubMed Central  Google Scholar 

  • Straw AH, Kram R (2016) Effects of shoe type and shoe-pedal interface on the metabolic cost of bicycling. Footwear Sci 8(1):19–22

    Article  Google Scholar 

  • Stromme S, Ingjer F, Meen H (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42(6):833–837

    Article  PubMed  CAS  Google Scholar 

  • Svedenhag J, Sjödin B (1985) Physiological characteristics of elite male runners in and off-season. Can J Appl Sport Sci 10(3):127–133

    PubMed  CAS  Google Scholar 

  • Van Werkhove H, Piazza SJ (2017) Does foot anthropometry predict metabolic cost during running? J Appl Biomech 33(5):317–322

    Article  Google Scholar 

  • Van Ingen Schenau GJ, Bobbert MF, De Haan A (1997) Does elastic energy enhance work and efficiency in the stretch-shortening cycle? J Appl Biomech 13(4):389–415

    Article  Google Scholar 

  • Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPAR∂. PLoS Biol. https://doi.org/10.1371/journal.pbio.0020294

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams KR, Cavanagh PR (1987) Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 63(3):1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Withers RT, Sherman WM, Miller JM, Costill DL (1981) Specificity of anaerobic threshold in endurance trained cyclists and runners. Eur J Appl Physiol 47(1):93–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Asher Straw for his help setting up the bicycle ergometer and the power-measuring pedals.

Author information

Authors and Affiliations

Authors

Contributions

WS and RK conceived and designed the experiment. WS and SK conducted the experiments. WS processed the data and wrote the manuscript. All authors interpreted and discussed the results. All authors read and approved the manuscript.

Corresponding author

Correspondence to Wannes Swinnen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Jean-René Lacour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swinnen, W., Kipp, S. & Kram, R. Comparison of running and cycling economy in runners, cyclists, and triathletes. Eur J Appl Physiol 118, 1331–1338 (2018). https://doi.org/10.1007/s00421-018-3865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3865-4

Keywords

  • Bicycling
  • Efficiency
  • Exercise
  • Training transfer
  • Triathlon