Foundational insights into the estimation of whole-body metabolic rate

Abstract

Since 2013, this journal has promoted the publication of thematic reviews (Taylor in Eur J Appl Physiol 113:1634, 2013), where leading groups were invited to review the critical literature within each of several sub-topics. The current theme is historically based, and is focussed on estimating the metabolic rate in humans. This review charts the development of our understanding of those methods, from the discovery of oxygen and carbon dioxide, to the introduction of highly sophisticated modern apparatus to examine the composition of expired gas and determine respiratory minute volume. An historical timeline links the six thematic vignettes on this theme. Modern advances have greatly enhanced data collection without significant decrements in measurement accuracy. At the same time, however, conceptual errors, particularly steady-state requirements, are too often ignored. Indeed, it is recognised that we often neglect the past, leading to errors in research design, experimental observations and data interpretation, and this appears to be increasingly prevalent within the open-access literature. Accordingly, the Editorial Board, in recognition of a widening gap between our experimental foundations and contemporary research, embarked on developing a number of thematic review series, of which this series is the first. The intent of each accompanying overview is to introduce and illuminate seminal investigations that led to significant scientific or intellectual breakthroughs, and to thereby whet the appetite of readers to delve more deeply into the historical literature; for it is only when the foundations are understood that we can best understand where we are now, and in which directions we should head.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alexander L (1945) The treatment of shock from prolonged exposure to cold, especially in water. In: Combined intelligence objectives sub-committee. Target number 24, medical

  2. Archiza B, Welch JF, Sheel AW (2017) Classical experiments in whole-body metabolism: closed-circuit respirometry. Eur J Appl Physiol 117:1929–1937

    PubMed  Google Scholar 

  3. Åstrand PO, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol 7:218–221

    PubMed  Google Scholar 

  4. Atwater WO, Rosa EB (1899) Description of a new respiration calorimeter and experiments on the conservation of energy in the human body. U.S. Department of Agriculture, Bulletin No. 63. Government Printing Office, Washington

    Google Scholar 

  5. Bartels H, Bücherl E, Hertz CW, Schwab M (1963) Methods in pulmonary physiology. Hafner Publishing Company Inc., New York

    Google Scholar 

  6. Beers Y (1953) Introduction to the theory of error. Addison-Wesley Pub. Co., Boston

    Google Scholar 

  7. Black J (1755) Experiments upon magnesia alba, quicklime, and some other alcaline substances. Essays Obs Phys Lit 2:157–225

    Google Scholar 

  8. Bowes HM, Burdon CA, Taylor NAS (2015) The scaling of human basal metabolic rate in adult males. In: Proceedings of the Australian physiological society, vol 46

  9. Cameron JN (1986) Principles of physiological measurement. Academic Press, London

    Google Scholar 

  10. Cathcart EP, Cuthbertson DP (1931) The composition and distribution of the fatty substances of the human subject. J Physiol 72:349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cherniack NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores of the body. Physiol Rev 50:196–243

    CAS  PubMed  Google Scholar 

  12. Consolazio CF, Johnson RE, Pecora LJ (1963) Physiological measurements of metabolic functions in man. McGraw-Hill Book Company, New York

    Google Scholar 

  13. Crawford A (1788) Experiments and observations on animal heat and inflammation of combustible bodies. J. Johnson, London

    Google Scholar 

  14. dal Monte A, Faina M, Leonardi L, Todaro A, Guidl G, Petrelli G (1989) II consumo massimo di ossígeno in telemetría. Rivista di Cultura Sportiva 15:35–44

    Google Scholar 

  15. Daynes HA (1920) Theory of the katharometer. Proc R Soc Ser A 97:273–286

    CAS  Google Scholar 

  16. Depretz C (1824) Recherches expérimental sur les cause de la chaleur animale. J Phys Exp. 143–159

  17. Douglas CG (1911) A method for determining the total respiratory exchange in man. J Physiol 42:xvii-xviii

    Google Scholar 

  18. Durnin JVGA, Edwards RG (1955) Pulmonary ventilation as an index of energy expenditure. Q J Exp Physiol Cogn Med Sci 40:370–377

    CAS  PubMed  Google Scholar 

  19. Einstein A (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys 323:639–641

    Google Scholar 

  20. Fick A (1870) Über die Messung des Blutquantums in der Herzventrikel. Verhandlungen der Physikalischen Gesellschaft zu Würzburg

  21. Fleisch A (1925) Der Pneumotachograph: ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflüger’s Archiv für die gesamte Physiologie des Menschen der Tiere 209:713–722

    Google Scholar 

  22. Fowler RC (1949) A rapid infra-red gas analyzer. Rev Sci Instrum 20:175–178

    CAS  PubMed  Google Scholar 

  23. Geppert J, Zuntz N (1888) Ueber die regulation der athmung. Pflüg Arch Eur J Physiol 42:189–245

    Google Scholar 

  24. Haldane JS (1892) A new form of apparatus for measuring the respiratory exchange of animals. J Physiol 13:419–430

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Haldane JS (1906) A convenient form of gas analysis apparatus. J Hyg (Lond) 6:74–76

    CAS  Google Scholar 

  26. Hess GH (1840) Recherches sur les quantités de chaleur dégagées dans les combinaisons chimiques. Comptes Rendus de l’Académie des Sciences 10:759–763

    Google Scholar 

  27. Hill AV (1927) Muscular movement in man: the factors governing speed and recovery from fatigue. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  28. Hutchinson J (1844) Contributions to vital statistics, obtained by means of a pneumatic apparatus for valuing the respiratory powers in relation to health. J Stat Soc Lond 7:193–212

    Google Scholar 

  29. Kenny GP, Jay O (2013) Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol 3:1–31

    Google Scholar 

  30. Kenny GP, Notley SR, Gagnon D (2017) Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol 117:1765–1785

    PubMed  Google Scholar 

  31. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  32. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    CAS  PubMed  Google Scholar 

  33. Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, New York

    Google Scholar 

  34. Klein HA (1974) The science of measurement: a historical survey. Dover Publications, Inc., New York

    Google Scholar 

  35. Lavoisier AL (1789) Traité élémentaire de chimie. Chez Cuchet, Paris

    Google Scholar 

  36. Lavoisier AL, Laplace PS (1784) Mémoire sur la chaleur. Royal Academy of Sciences, 28 June 1783

  37. Lefèvre J (1911) Chaleur animale et bio-énergétique. Masson et Cie, Paris

    Google Scholar 

  38. Lenox JB, Koegel E (1976) Evaluation of a new low resistance valve. J Appl Physiol 37:410–413

    Google Scholar 

  39. Lifson N, Gordon GB, Vissscher MB, Nier AO (1949) The fate of utilized molecular oxygen and the source of the oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. J Biol Chem 180:803–811

    CAS  PubMed  Google Scholar 

  40. Lusk G (1909) The elements of the science of nutrition. W.B. Saunders Co., Philadelphia

    Google Scholar 

  41. Macfarlane DJ (2017) Open-circuit respirometry: a historical review of portable gas analysis systems. Eur J Appl Physiol 117:2369–2386

    CAS  PubMed  Google Scholar 

  42. Mayow J (1674) Tractatus quinque medico-physici. E Theatro Sheldoniano, Oxford

    Google Scholar 

  43. Newton I (1687) Philosophiae naturalis principia mathematica. Royal Society, London

    Google Scholar 

  44. Notley SR, Fullagar HHK, Lee DS, Matsuda-Nakamura M, Peoples GE, Taylor NAS (2014) Revisiting ventilatory and cardiovascular predictions of whole-body metabolic rate. J Occup Environ Med 56:214–223

    PubMed  Google Scholar 

  45. Notley SR, Peoples GE, Taylor NAS (2015) The utility of heart rate and minute ventilation as predictors of whole-body metabolic rate during occupational simulations involving load carriage. Ergonomics 58:1671–1681

    PubMed  Google Scholar 

  46. Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol Part A Mol Integr Physiol 122:37–44

    Google Scholar 

  47. Pepys WH (1807) A new eudiometer, accompanied with experiments, elucidating its application. Philos Trans R Soc Lond 97:247–259

    Google Scholar 

  48. Pettenkofer M (1862) Ueber die respiration. Annalen der Chemie Pharmacie 123:1–52

    Google Scholar 

  49. Priestley J (1774) Experiments and observations on different kinds of air, vol II. J. Johnson, London

    Google Scholar 

  50. Prout W (1813) Observations on the quantity of carbonic acid gas emitted from the lungs during respiration, at different times, and under different circumstances. Ann Philos 2:328–343

    Google Scholar 

  51. Regnault HV, Reiset J (1849) Recherches chimiques sur la respiration des animaux des diverses classes. Bachelier, Paris

    Google Scholar 

  52. Richardson HB (1929) The respiratory quotient. Physiol Rev 9:61–125

    CAS  Google Scholar 

  53. Royal Society (1975). Quantities, units, and symbols. Royal Society, London

    Google Scholar 

  54. Rübner M (1883) Ueber den Einfluss der Köpergrösse auf Stoff- und Kraftwechsel. Zeitschrift für Biologie 19:535–562

    Google Scholar 

  55. Rübner M (1894) Die quelle de thierschen warme. Zeitschrift für Biologie 30:73–142

    Google Scholar 

  56. Scheele CW (1777) Chemische Abhandlung von der Luft und dem Feuer. W. Engelmann, Leipzig

    Google Scholar 

  57. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  58. Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labelled water. J Appl Physiol 53:955–959

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schoffelen PFM, Plasqui G (2018) Classical experiments in whole-body metabolism: open-circuit respirometry-diluted flow chamber, hood, or facemask systems. Eur J Appl Physiol 118:33–49

    CAS  PubMed  Google Scholar 

  60. Severinghaus JW (1963) High-temperature operation of oxygen electrode giving fast response for respiratory gas sampling. Clin Chem 9:727–733

    Google Scholar 

  61. Shaw GB (1945) Back to Methuselah. Oxford University Press, Oxford

    Google Scholar 

  62. Shephard RJ (2015) An illustrated history of health and fitness, from pre-history to our post-modern world. Studies in history and philosophy of science, vol 39. Springer, Switzerland

    Google Scholar 

  63. Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117:381–387

    PubMed  Google Scholar 

  64. Shiltsev VD (2011) This month in physics history. Nov. 19, 1711: Birth of Mikhail Lomonosov, Russia’s first modern scientist. Am Phys Soc News 20:2

    Google Scholar 

  65. Simonson E (1928) Ein neuer respirationsapparat. Arbeitsphysiologie 1:224–257

    CAS  Google Scholar 

  66. Smith E (1859) Experimental inquiries into the chemical and other phenomena of respiration, and their modifications by various physical agencies. Philos Trans R Soc Lond 149:681–714

    Google Scholar 

  67. Smith CM (2005) Origin and uses of primum non nocere—above all, do no harm! J Clin Pharmacol 45:371–377

    PubMed  Google Scholar 

  68. Speakman JR (1997) Doubly labelled water: theory and practice. Chapman & Hall, London

    Google Scholar 

  69. Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 2:1–15

    CAS  PubMed  Google Scholar 

  70. Taylor NAS (2013) Thematic reviews. Series I: space physiology. Eur J Appl Physiol 113:1634

    Google Scholar 

  71. Taylor CR, Maloiy GMO, Weibel ER, Langman VA, Kamau JMZ, Seeherman HJ, Heglund NC (1981) Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol 44:25–37

    CAS  PubMed  Google Scholar 

  72. Taylor NAS, Peoples GE, Petersen SR (2016) Load carriage, human performance and employment standards. Appl Physiol Nutr Metab 41:S133-S147

    Google Scholar 

  73. Tipton CM (2014) History of exercise physiology. Human Kinetics Publishers, Champaign

    Google Scholar 

  74. Tissot J (1904) Nouvelle méthode de mesure et d’inscription du débit et des mouvements respiratoires de l’homme et des animaux. Journal de Physiologie et de Pathologie Générale 6:688–700

    Google Scholar 

  75. von Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Ein Beitrag zur Naturkunde, Dechsler

    Google Scholar 

  76. Ward RM (2015) The criminal corpse, anatomists and the criminal law: parliamentary attempts to extend the dissection of offenders in late eighteenth-century England. J Br Stud 54:63–87

    PubMed  PubMed Central  Google Scholar 

  77. Ward SA (2018) Open-circuit respirometry: real-time, laboratory-based systems. Eur J Appl Physiol 118

  78. Weir JB (1948) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    Google Scholar 

  79. Westerterp KR (2017) Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol 117:1277–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilmore JH, Costill DL (1974) Semiautomated systems approach to the assessment of oxygen uptake during exercise. J Appl Physiol 36:618–620

    CAS  PubMed  Google Scholar 

  81. Wolff HS (1958) The integrating motor pneumotachograph: a new instrument for the measurement of energy expenditure by indirect calorimetry. Q J Exp Physiol Cogn Med Sci 43:270–283

    CAS  PubMed  Google Scholar 

  82. Zuntz N (1901) Ueber die Bedeutung der verschiedenen Nahrstoffe als Erzeuger der Muskelkraft. Pflüg Arch Eur J Physiol 83:557–571

    CAS  Google Scholar 

  83. Zuntz N, Schumburg W (1901) Studien zu einer Physiologie des Marsches. Verlag von August Hirschwald, Berlin

    Google Scholar 

  84. Zuntz N, Loewy A, Müller F, Caspari W (1906) Höhenklima und Bergwanderungen: in ihrer Wirkung auf den manschen. Deutsches Verlagshaus Bong, Berlin

    Google Scholar 

Recommended supplementary reading

  1. Allen W, Pepys WH (1808) On changes produced in atmospheric air, and oxygen gas, by respiration. Philos Trans R Soc Lond 1:305–308

    Google Scholar 

  2. Atchley WR (1978) Ratios, regression intercepts, and the scaling of data. Syst Zool 27:78–83

    Google Scholar 

  3. Atwater WO, Benedict FG (1905) A respiration calorimeter with the appliances for the direct determination of oxygen. Carnegie Institution of Washington publication no. 42. Carnegie Institution of Washington, Washington

    Google Scholar 

  4. Bishop PJ (1977) A bibliography of John Hutchinson. Med Hist 21:384–396

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boothby WM, Sandiford I (1924) Basal metabolism. Physiol Rev 4:69–162

    CAS  Google Scholar 

  6. Carpenter KJ (1991) Edward Smith (1819–1874). J Nutr 121:1515–1521

    CAS  PubMed  Google Scholar 

  7. Douglas CG (1956) The development of experimental methods for determining the energy expenditure of man. Proc Nutr Soc 15:72–77

    CAS  PubMed  Google Scholar 

  8. Durnin JVGA, Passmore R (1967) Energy, work and leisure. Heinemann Educational Books, London

    Google Scholar 

  9. Fowler WS, Blackburn CM, Helmholz HF (1957) Determination of basal rate of oxygen consumption by open and closed-circuit methods. J Clin Endocrinol Metab 17:786–796

    CAS  PubMed  Google Scholar 

  10. Guerlac H (1957a) Joseph Black and fixed air a bicentenary retrospective, with some new or little known material. Isis 48:124–151

    CAS  Google Scholar 

  11. Guerlac H (1957b) Joseph Black and fixed air: Part II. Isis 48:433–456

    CAS  PubMed  Google Scholar 

  12. Gunga H-C (2009) Nathan Zuntz: his life and work in the fields of high altitude physiology and aviation medicine. Academic Press, Burlington

    Google Scholar 

  13. Haldane JS (1918) Methods of air analysis. Charles Griffin, London

    Google Scholar 

  14. Haldane JS, Priestley JG (1935) Respiration. Oxford University Press, New York

    Google Scholar 

  15. Harris JA, Benedict FG (1919) A biometric study of basal metabolism. Carnegie Institution of Washington, Publication No. 279. J.B. Lippincott, Philadelphia

    Google Scholar 

  16. Kofranyi E, Michaelis HF (1940) Ein tragbarer apparat zur bestimmung des gasstoffwechsels. Arbeitsphysiologie 11:148–150

    CAS  Google Scholar 

  17. Krogh A (1916) The respiratory exchange of animals and man. Longmans, Green and Co., London

    Google Scholar 

  18. Lodwig TH (1974) The ice calorimeter of Lavoisier and Laplace and some of its critics. Ann Sci 31:1–18

    CAS  Google Scholar 

  19. Lusk G (1922) A history of metabolism. In: Barker LF Endocrinology and metabolism, vol 3. D. Appleton and Company, New York, pp 3–38

    Google Scholar 

  20. Lusk G (1932) A tribute to the life and work of Max Rubner. Science 76:129–135

    CAS  PubMed  Google Scholar 

  21. McKie D (1952) Antoine Lavoisier: scientist, economist, social reformer. Herny Schuman, New York

    Google Scholar 

  22. McLean JA, Tobin G (1987) Animal and human calorimetry. Cambridge University Press, New York

    Google Scholar 

  23. Michaelis H, Müller EA (1942) Die Bedeutung des alveolaren CO2-Druckes für die Bestimmung des auf die Atmung entfallenden Energieverbrauches. Arbeitsphysiologie 12:85–91

    Google Scholar 

  24. Partington JR (1962) The discovery of oxygen. J Chem Educ 39:123–125

    Google Scholar 

  25. Riedman SR (1957) Antoine Lavoisier: scientist and citizen. Thomas Nelson & Sons, New York

    Google Scholar 

  26. Rosen G (1955) Metabolism: the evolution of a concept. J Am Diet Assoc 31:861–867

    CAS  PubMed  Google Scholar 

  27. Shephard RJ, Aoyagi Y (2012) Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. Eur J Appl Physiol 112:2785–2815

    PubMed  Google Scholar 

  28. Speakman JR (1990) Principles, problems and a paradox with the measurement of energy expenditure of free-living subjects using doubly-labelled water. Stat Med 9:1365–1380

    CAS  PubMed  Google Scholar 

  29. Spriggs EA (1977) John Hutchinson, the inventor of the spirometer—his north country background, life in London, and scientific achievements. Med Hist 21:357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Webb P (1985) Human calorimeters. Praeger, New York

    Google Scholar 

  31. West JB (2015) Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases. In: Essays on the history of respiratory physiology. Perspectives in physiology. Springer, New York, pp 99–112

    Google Scholar 

Download references

Acknowledgements

No financial support to report.

Author information

Affiliations

Authors

Contributions

This series of invited reviews was conceived by NAST and MIL, and then approved by the Editorial Board of this journal. NAST, MIL and RJS developed the series, the topics and invited the lead authors. This manuscript was written, edited and approved for submission by NAST, MIL and RJS.

Corresponding author

Correspondence to Nigel A. S. Taylor.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, N.A.S., Shephard, R.J. & Lindinger, M.I. Foundational insights into the estimation of whole-body metabolic rate. Eur J Appl Physiol 118, 867–874 (2018). https://doi.org/10.1007/s00421-018-3828-9

Download citation

Keywords

  • Calorimetry
  • Metabolic rate
  • Oxygen consumption
  • Respirometry