Skip to main content
Log in

Localised cutaneous microvascular adaptation to exercise training in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Exercise training induces adaptation in conduit and resistance arteries in humans, partly as a consequence of repeated elevation in blood flow and shear stress. The stimuli associated with intrinsic cutaneous microvascular adaptation to exercise training have been less comprehensively studied.

Methods

We studied 14 subjects who completed 8-weeks cycle ergometer training, with partial cuff inflation on one forearm to unilaterally attenuate cutaneous blood flow responses during each exercise-training bout. Before and after training, bilateral forearm skin microvascular dilation was determined using cutaneous vascular conductance (CVC: skin flux/blood pressure) responses to gradual localised heater disk stimulation performed at rest (33, 40, 42 and 44 °C).

Results

Cycle exercise induced significant increases in forearm cutaneous flux and temperature, which were attenuated in the cuffed arm (2-way ANOVA interaction-effect; P < 0.01). We found that forearm CVC at 42 and 44 °C was significantly lower in the uncuffed arm following 8-weeks of cycle training (P < 0.01), whereas no changes were apparent in the contralateral cuffed arm (P = 0.77, interaction-effect P = 0.01).

Conclusions

Lower limb exercise training in healthy young men leads to lower CVC-responses to a local heating stimulus, an adaptation mediated, at least partly, by a mechanism related to episodic increases in skin blood flow and/or skin temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CVC:

Cutaneous vascular conductance

HRMax:

Heart rate max

PU:

Perfusion units

SNP:

Sodium nitroprusside

References

  • Andersen P, Henriksson J (1977) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol 270(3):677–690. https://doi.org/10.1113/jphysiol.1977.sp011975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birk GK, Dawson EA, Atkinson C, Haynes A, Cable NT, Thijssen DHJ, Green DJ (2012) Brachial artery adaptation to lower limb exercise training: role of shear stress. J Appl Physiol 112(10):1653–1658. https://doi.org/10.1152/japplphysiol.01489.2011

    Article  PubMed  Google Scholar 

  • Black MA, Green DJ, Cable NT (2008) Exercise training prevents age-related decline in nitric oxide (NO)-mediated vasodilator function in human microvessels. J Physiol 586:3511–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair S, Morris N J, N (2009) Healthy hearts—and the universal benefits of being physically active: physical activity and health. Ann Epid 19:253–256

    Article  Google Scholar 

  • Boegli Y, Gremion G, Golay S, Kubli S, Liaudet L, Leyvraz P-F, Waeber B, Feihl F (2003) Endurance training enhances vasodilation induced by nitric oxide in human skin. J Invest Dermatol 121:1187–1204

    Article  Google Scholar 

  • Boignard A, Salvat-Melis M, Carpentier PH, Minson CT, Grange L, Duc C, Sarrot-Reynauld F, Cracowski J-L (2005) Local hyperhemia to heating is impaired in secondary Raynaud’s phenomenon. Arthritis Res Ther 7:R1103. https://doi.org/10.1186/ar1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Braverman IM (1989) Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Investig Dermatol 93(2 s):2S–9S

    Article  CAS  PubMed  Google Scholar 

  • Brown MD (2003) Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol 88:645–658

    Article  PubMed  Google Scholar 

  • Brunt VE, Eymann TM, Francisco MA, Howard MJ, Minson CT (2016) Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J Appl Physiol 121(3):716

    Article  CAS  PubMed  Google Scholar 

  • Carter HH, Spence AL, Atkinson CL, Pugh CJA, Cable NT, Thijssen DHJ, Naylor LH, Green DJ (2014) Distinct effects of blood flow and temperature on cutaneous microvascular adaptation. Med Sci Sport Exer 46(11):2113–2121

    Article  Google Scholar 

  • Carter HH, Gong P, Kirk RW, Es haghianS, Atkinson CL, Sampson DD, Green DJ, McLaughlin RA (2016) Optical coherence tomography in the assessment of acute changes in cutaneous vascular diameter induced by heat stress. J Appl Physiol 121(4):965–972

    Article  PubMed  Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78 (5):603–612. https://doi.org/10.4065/78.5.603

    Article  PubMed  Google Scholar 

  • Choi PJ, Brunt VE, Fujii N, Minson CT (2014) New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. J Appl Physiol 117(3):277

    Article  PubMed  PubMed Central  Google Scholar 

  • Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, Tipton KD, Wagenmakers AJM (2013) Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591(3):641–656. https://doi.org/10.1113/jphysiol.2012.239566

    Article  CAS  PubMed  Google Scholar 

  • Colberg SR, Parson HK, Nunnold T, Holton DR, Swain DP, Vinik AI (2005) Change in cutaneous perfusion following 10 weeks of aerobic training in Type 2 diabetes. J Diabetes Complicat 19(5):276–283

    Article  PubMed  Google Scholar 

  • Cracowski J-L, Minson CT, Salvat-Melis M, Halliwill JR (2006) Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci 27:503–508

    Article  CAS  PubMed  Google Scholar 

  • Cracowski JL, Gaillard-Bigot F, Cracowski C, Roustit M, Millet C (2011) Skin microdialysis coupled with laser speckle contrast imaging to assess microvascular reactivity. Microvasc Res 82(3):333–338. https://doi.org/10.1016/j.mvr.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  • Cui J, McQuillan P, Moradkhan R, Pagana C, Sinoway LI (2009) Sympathetic responses during saline infusion into the veins of an occluded limb. J Physiol 587(14):3619–3627. https://doi.org/10.1113/jphysiol.2009.173237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Leuenberger UA, Gao Z, Sinoway LI (2011) Sympathetic and cardiovascular responses to venous distension in an occluded limb. Am J Physiol 301(6):R1831

    CAS  Google Scholar 

  • Cui J, McQuillan PM, Blaha C, Kunselman AR, Sinoway LI (2012) Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans. Am J Physiol 303(4):H457

    CAS  Google Scholar 

  • Dawson EA, Low DA, Meeuwis IHM, Kerstens FG, Atkinson CL, Cable NT, Green DJ, Thijssen DHJ (2015) Reproducibility of cutaneous vascular conductance responses to slow local heating assessed using seven-laser array probes. Microcirculation 22(4):276–284. https://doi.org/10.1111/micc.12196

    Article  PubMed  Google Scholar 

  • Dick HJT, Cable NT, Daniel GJ (2012) Impact of exercise training on arterial wall thickness in humans. Clin Sci (London: 1979) 122 (Pt 7):311–322. https://doi.org/10.1042/CS20110469

    Google Scholar 

  • Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM (2012a) Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors. Hypertension 59(2):513

    Article  CAS  PubMed  Google Scholar 

  • Fernandes T, Nakamuta JS, Magalhães FC, Roque FR, Lavini-Ramos C, Schettert IT, Coelho V, Krieger JE, Oliveira EM (2012b) Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis. J Hypertens 30(11):2133–2143. https://doi.org/10.1097/HJH.0b013e3283588d46

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson I, Larsson M, Strömberg T (2009) Measurement depth and volume in laser Doppler flowmetry. Microvasc Res 78(1):4–13

    Article  PubMed  Google Scholar 

  • Gliemann L, Buess R, Nyberg M, Hoppeler H, Odriozola A, Thaning P, Hellsten Y, Baum O, Mortensen SP (2015) Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiol 214(2):210–220. https://doi.org/10.1111/apha.12501

    Article  CAS  Google Scholar 

  • Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR (1994) Modification of forearm resistance vessels by exercise training in young men. J Appl Physiol 77(4):1829–1833

    Article  CAS  PubMed  Google Scholar 

  • Green DJ, Cable NT, Joyner MJ, O’Driscoll G (2008) Exercise and cardiovascular risk reduction: updating the rationale for exercise. J Appl Physiol 105:766–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DJ, Carter HH, Fitzsimons MG, Cable NT, Thijssen DHJ, Naylor LH (2010) Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans. J Physiol (Lond) 588:1571–1577

    Article  CAS  Google Scholar 

  • Green DJ, Spence A, Halliwill JR, Cable NT, Thijssen DHJ (2011) Exercise and vascular adaptation in asymptomatic humans. Exp Physiol 96:57–70

    Article  PubMed  Google Scholar 

  • Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ (2017) Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev 97(2):495

    Article  PubMed  Google Scholar 

  • Groothuis JT, Poelkens F, Wouters CW, Kooijman M, Hopman MTE (2008) Leg intravenous pressure during head-up tilt. J Appl Physiol 105(3):811–815. https://doi.org/10.1152/japplphysiol.90304.2008

    Article  PubMed  Google Scholar 

  • Hambrecht R, Adams V, Erbs S, Linke a, Krankel N, Shu Y, Baither Y, Geilen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158

    Article  CAS  PubMed  Google Scholar 

  • Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL (1993) Coronary artery size and dilating capacity in ultradistance runners. Circulation 87(4):1076–1082

    Article  CAS  PubMed  Google Scholar 

  • Holowatz LA, Thompson-Torgerson CS, Kenney WL (2008) The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol 105:370–372. https://doi.org/10.1152/japplphysiol.00858.2007

    Article  PubMed  Google Scholar 

  • Johnson JM, O’Leary DS, Taylor WF, Kosiba W (1986) Effects of local warming on forearm reactive hyperaemia. Clin Physiol Oxf 6:337–346

    Article  CAS  Google Scholar 

  • Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol (Lond) 587:5551–5558

    Article  CAS  Google Scholar 

  • Kellogg DL, Liu Y, Kosiba IF, O’Donnell D (1999) Role of nitric oxide in the vascular effects of local warming of the skin in humans. J Appl Physiol 86:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Krustrup P, Hellsten Y, Bangsbo J (2004) Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J Physiol (London) 559(1):335–345. https://doi.org/10.1113/jphysiol.2004.062232

    Article  CAS  Google Scholar 

  • Kuo L, Davis MJ, Chilian WM (1995) Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 92(3):518–525. https://doi.org/10.1161/01.cir.92.3.518

    Article  CAS  PubMed  Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Nature 231:405–407

    CAS  Google Scholar 

  • Laughlin MH (1995) Endothelium-mediated control of coronary vascular tone after chronic exercise training. Med Sci Sports Exerc 27(8):1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Laughlin MH, Turk JR, Schrage WG, Woodman CR, Price EM (2003) Influence of coronary artery diameter on eNOS protein content. Am J Physiol 284:H1307-1312

    Google Scholar 

  • Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol 91(4):1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Minson CT, Holowatz LA, Wong BJ, Kenney WL, Wilkins BW (2002) Decreased nitric oxide- and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol 93(5):1644–1649

    Article  PubMed  Google Scholar 

  • Naylor LH, Weisbrod CJ, O’Driscoll G, Green DJ (2005) Measuring peripheral resistance and conduit arterial structure in humans using Doppler ultrasound. J Appl Physiol 98(6):2311–2315. https://doi.org/10.1152/japplphysiol.01047.2004

    Article  PubMed  Google Scholar 

  • Newcomer S, Thijssen DHJ, Green DJ (2011) Effects of exercise on endothelium and endothelium/smooth muscle crosstalk: role of exercise-induced hemodynamics. J Appl Physiol 111:311–320

    Article  CAS  PubMed  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316(7139):1236–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley NJ, Dawson EA, Birk GK, Cable NT, George K, Whyte G, Thijssen DH, Green DJ (2011) Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol 110(5):1190–1195

    Article  PubMed  Google Scholar 

  • Silber D, McLaughlin D, Sinoway L (1991) Leg exercise increases peak forearm blood flow. J Appl Physiol 71:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96(9):822–828. https://doi.org/10.1113/expphysiol.2010.056176

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CJ, Santhanam L, Bruning RS, Stanhewicz A, Berkowitz DE, Holowatz LA (2011) Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension 58(5):935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snell PG, Martin WH, Buckey JC, Bloomqvist CG (1987) Maximal vascular leg conductance in trained and untrained men. J Appl Physiol 62:606–610

    Article  CAS  PubMed  Google Scholar 

  • Taylor WF, Johnson JM, Leary D, Park MK (1984) Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol 57(1):191

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DHJ, Dawson EA, Tinken TM, Cable NT, Green DJ (2009) Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 53:986–992

    Article  CAS  PubMed  Google Scholar 

  • Tinken TM, Thijssen DHJ, Black MA, Cable NT, Green DJ (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586(20):5003–5012. https://doi.org/10.1113/jphysiol.2008.158014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinken TM, Thijssen DHJ, Hopkins ND, Black MA, Dawson EA, Minson CT, Newcomer SC, Laughlin MH, Cable NT, Green DJ (2009) Impact of shear rate modulation on vascular function in humans. Hypertension 54:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinken TM, Thijssen DHJ, Hopkins ND, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates vascular adaptations to exercise training in humans. Hypertension 55:312–318

    Article  CAS  PubMed  Google Scholar 

  • Williamson JW, Fadel PJ, Mitchell JH (2006) New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol 91(1):51–58. https://doi.org/10.1113/expphysiol.2005.032037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.J.G was funded by the Australian Research Council (DP 130103793). D.H.J.T was a recipient of the E. Dekker stipend (Netherlands Heart Foundation, 2009 T064).

Funding

Australian Research Council (DP 130103793), E. Dekker stipend (Netherlands Heart Foundation, 2009 T064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Green.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, C.L., Carter, H.H., Thijssen, D.H.J. et al. Localised cutaneous microvascular adaptation to exercise training in humans. Eur J Appl Physiol 118, 837–845 (2018). https://doi.org/10.1007/s00421-018-3813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3813-3

Keywords

Navigation