Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes

Abstract

Purpose

The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined.

Methods

Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry.

Results

At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise.

Conclusion

Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ACh:

Acetylcholine

AE:

Acute exercise

ApoA:

Apolipoprotein A

ApoB:

Apolipoprotein B

AUC:

Area under the curve

BMI:

Body mass index

BP:

Blood pressure

CO:

Cardiac output

CV:

Cardiovascular

DBP:

Diastolic blood pressure

ECW%:

Extracellular water%

FBC:

Full blood cell count

FFM%:

Fat free mass%

FM%:

Fat mass%

FMD:

Flow-mediated dilation

FRAP:

Ferric-reducing ability of plasma

HDL:

High-density lipoprotein cholesterol

HR:

Heart rate

hsCRP:

High-sensitivity C-reactive protein

ICG:

Impedance cardiography

ICW%:

Intracellular water%

LDF:

Laser Doppler flowmetry

LDL:

Low-density lipoprotein cholesterol

MAP:

Mean arterial pressure

MDA:

Malondialdehyde

NO:

Nitric oxide

PORH:

Post-occlusive reactive hyperemia

RE:

Regular exercise

RPE:

Rating of perceived exertion

SBP:

Systolic blood pressure

SD:

Standard deviation

SNP:

Sodium nitroprusside

SV:

Stroke volume

TBARS:

Thiobarbituric acid reactive substances

TBW%:

Total body water%

TPR:

Total peripheral resistance

WHR:

Waist-to-hip ratio

References

  1. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76

    CAS  Article  PubMed  Google Scholar 

  2. Binggeli C, Spieker LE, Corti R, Sudano I, Stojanovic V, Hayoz D, Luscher TF, Noll G (2003) Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? J Am Coll Cardiol 42:71–77

    CAS  Article  PubMed  Google Scholar 

  3. Birk GK, Dawson EA, Batterham AM, Atkinson G, Cable T, Thijssen DH, Green DJ (2013). Effects of exercise intensity on flow mediated dilation in healthy humans. Int J Sports Med 34(5):409–414

    CAS  PubMed  Google Scholar 

  4. Borg G (1998) Borg’s perceived exertion and pain scales. P120. Human Kinetics, Champaign

    Google Scholar 

  5. Cavka A, Cosic A, Grizelj I, Koller A, Jelakovic B, Lombard JH, Phillips SA, Drenjancevic I (2013). Effects of AT1 receptor blockade on plasma thromboxane A2 (TXA2) level and skin microcirculation in young healthy women on low salt diet. Kidney Blood Press Res 37(4–5):432–442

    CAS  Article  PubMed  Google Scholar 

  6. Cavka A, Cosic A, Jukic I, Jelakovic B, Lombard JH, Phillips SA, Seric V, Mihaljevic I, Drenjancevic I (2015) The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans. J Physiol 593(24):5313–5324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Chen MJ, Fan X, ST M (2002) Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a metaanalysis. J Sports Sci 20:873–899

    Article  PubMed  Google Scholar 

  8. Clarkson P, Montgomery HE, Mullen MJ, Donald AE, Powe AJ, Bull T, Jubb M, World M, Deanfield JE (1999) Exercise training enhances endothelial function in young men. J Am Coll Cardiol 33(5):1379–1385

    CAS  Article  PubMed  Google Scholar 

  9. Cornelissen VA, Smart NA (2013). Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, Vukovic R, Drenjancevic I (2016) Attenuated flow-induced dilation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol 594(17):4917–4931

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Crakowski JL, Minson CT, Salvat-Melis M, Halliwill JR (2006) Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci 9:503–509

    Article  Google Scholar 

  12. Currie KD, McKelvie RS, MacDonald MJ (2012) Flow-mediated dilation is acutely improved after high-density interval exercise. Am Coll Sports Med 195:2057–2064

    Google Scholar 

  13. Dalle-Ave A, Kubli S, Golay S, Delachaux A, Liaudet L, Waeber B, Feihl F (2004) Acetylcholine-induced vasodilation and reactive hyperemia are not affected by acute cyclo-oxygenase inhibition in human skin. Microcirculation 11:327–336

    CAS  Article  PubMed  Google Scholar 

  14. Dawson EA, Green DJ, Cable NT, Thijssen DH (2013) Effects of acute exercise on flow-mediated dilatation in healthy humans. J Appl Physiol (1985) 115(11):1589–1598

    Article  Google Scholar 

  15. Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36:327–358

    Article  PubMed  Google Scholar 

  16. Gonzales JU, Thompson BC, Thistlethwaite JR, Scheuermann BW (2011) Association between exercise hemodynamics and changes in local vascular function following acute exercise. Appl Physiol Nutr Metab 36:137–144

    Article  PubMed  Google Scholar 

  17. Gordon B, Chen S, Durstine JL (2014) The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep 13(4):253–259

    Article  PubMed  Google Scholar 

  18. Gori T, Grotti S, Dragoni S, Lisi M, Di Stolfo G, Sonnati S, Fineschi M, Parker JD (2010) Assessment of vascular function: flow-mediated constriction complements the information of flow-mediated dilatation. Heart 96:141–147

    CAS  Article  PubMed  Google Scholar 

  19. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108:530–535

    Article  PubMed  Google Scholar 

  20. Green DJ, Maiorana AJ, Siong JH, Burke V, Erickson M, Minson CT, Bilsborough W, O’Driscoll G (2006). Impaired skin blood flow response to environmental heating in chronic heart failure. Eur Heart J 27(3):338–343

    Article  PubMed  Google Scholar 

  21. Green DJ, Carter HH, Fitzsimons MG, Cable NT, Thijssen DH, Naylor LH (2010) Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans. J Physiol 588(Pt 9):1571–1577

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Grund A, Krause H, Kraus M, Siewers M, Rieckert H, Müller MJ (2001). Association between different attributes of physical activity and fat mass in untrained, endurance- and resistance-trained men. Eur J Appl Physiol 84(4):310–320

    CAS  Article  PubMed  Google Scholar 

  23. Gurd B, Klentrou P (2003) Physical and pubertal development in young male gymnasts. J Appl Physiol (1985) 95(3):1011–1015

    CAS  Article  Google Scholar 

  24. Hahn A, Bourdon P, Tanner R (2000) Protocols for the physiological assessment of rowers. In: Gore CJ (ed) Physiological Tests for elite athletes. Human Kinetics, Champaign, pp 311–326

    Google Scholar 

  25. Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107(25):3152–3158

    CAS  Article  PubMed  Google Scholar 

  26. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP (2008) The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity (Silver Spring) 16:578–584

    Article  Google Scholar 

  27. Hwang IC, Kim KH, Choi WS, Kim HJ, Im MS, Kim YJ, Kim SH, Kim MA, Sohn DW, Zo JH (2012) Impact of acute exercise on brachial artery flow-mediated dilatation in young healthy people. Cardiovasc Ultrasound 10:39

    Article  PubMed  PubMed Central  Google Scholar 

  28. Johnson BD, Padilla J, Wallace JP (2012a) The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur J Appl Physiol 112(1):33–42

    CAS  Article  PubMed  Google Scholar 

  29. Johnson BD, Mather KJ, Newcomer SC, Mickleborough TD, Wallace JP (2012b) Brachial artery flow-mediated dilation following exercise with augmented oscillatory and retrograde shear rate. Cardiovasc Ultrasound 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jones H, Green DJ, George K, Atkinson G (2010) Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans. Am J Physiol Regul Integr Comp Physiol 298:R427–R432

    CAS  Article  PubMed  Google Scholar 

  31. Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol 587(Pt 23):5551–5558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Jurva JW, Phillips SA, Syed AQ, Syed AY, Pitt S, Weaver A, Gutterman DD (2006) The effect of exertional hypertension evoked by weight lifting on vascular endothelial function. J Am Coll Cardiol 48:588–589

    Article  PubMed  Google Scholar 

  33. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167:999Y1008

    Article  Google Scholar 

  34. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos JD, Kulkarni KR, Slentz CA (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347:1483Y92

    Article  Google Scholar 

  35. Kvernmo HD, Stefanovska A, Kirkebøen KA, Osterud B, Kvernebo K (1998). Enhanced endothelium-dependent vasodilatation in human skin vasculature induced by physical conditioning. Eur J Appl Physiol Occup Physiol 79(1):30–36

    CAS  Article  PubMed  Google Scholar 

  36. Laughlin MH, Newcomer SC, Bender SB (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol (1985) 104(3):588–600

    Article  Google Scholar 

  37. Lee DC, Artero EG, Sui X, Blair SN (2010) Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol 24(4 Suppl):27–35

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Lenasi H, Strucl M (2004). Effect of regular physical training on cutaneous microvascular reactivity. Med Sci Sports Exerc 36(4):606–612

    Article  PubMed  Google Scholar 

  39. Lenasi H, Strucl M (2008). The effect of nitric oxide synthase and cyclooxygenase inhibition on cutaneous microvascular reactivity. Eur J Appl Physiol 103(6):719–726

    CAS  Article  PubMed  Google Scholar 

  40. Lorenzo S, Minson CT (2007) Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. J Physiol 585:295–303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Medow MS, Taneja I, Stewart JM (2007) Cyclooxygenase and nitric oxide synthase dependence of cutaneous reactive hyperemia in humans. Am J Physiol Heart Circ Physiol 293:H425–H432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Millgard J, Lind L (1998) Acute hypertension impairs endothelium dependent vasodilation. Clin Sci (Lond) 94:601–607

    CAS  Article  Google Scholar 

  43. Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomuscommersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463

    CAS  Article  PubMed  Google Scholar 

  44. Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP (2006) The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol 98:256–262

    CAS  Article  PubMed  Google Scholar 

  45. Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH (2011). Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda) 26(3):132–145

    Google Scholar 

  46. Phillips SA, Wang J, Pritchard K, Gutterman DD (2011) Resistance and aerobic exercise protects against acute endothelial impairment induced by a single exposure to hypertension during exertion. J App Physiol 110:1013–1020

    Article  Google Scholar 

  47. Plowman SA, Smith DL (2010). Exercise physiology for health, fitness, and performance, Third edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  48. Roche DM, Rowland TW, Garrard M, Marwood S, Unnithan VB (2010) Skin microvascular reactivity in trained adolescents. Eur J Appl Physiol 108(6):1201–1208

    Article  PubMed  Google Scholar 

  49. Rooks CR, McCully KK, Dishman RK (2011) Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers. Psychophysiology 48:1299–1308

    Article  PubMed  Google Scholar 

  50. Roustit M, Cracowski JL (2012) Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation 19(1):47–64. https://doi.org/10.1111/j.1549-8719.2011.00129.x

    Article  PubMed  Google Scholar 

  51. Schuler G, Adams V, Goto Y (2009) Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 34(24):1790–1799

    Article  Google Scholar 

  52. Silvestro A, Schiano V, Bucur R, Brevetti G, Scopacasa F, Chiariello M (2006) Effect of propionylcarnitine on changes in endothelial function and plasma levels of adhesion molecules induced by acute exercise in patients with intermittent claudication. Angiology 57:145–154

    CAS  Article  PubMed  Google Scholar 

  53. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? Chest 123(6):2028–2033

    Article  Google Scholar 

  54. Wang JS (2005). Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature. Eur J Appl Physiol 93(4):429–434

    Article  PubMed  Google Scholar 

  55. Warburton DE, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Humen DP (2002) Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Exp Physiol 87:613–622

    Article  PubMed  Google Scholar 

  56. Zhu J, Drenjancevic-Peric I, McEwen S, Friesema J, Schulta D, Yu M, Roman RJ, Lombard JH (2006) Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am J Physiol Heart Circ Physiol 291(2):H929–H938 (Bethesda, Maryland, USA)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Rowing Club Iktus Osijek and Croatian Rowing Club Vukovar for engagement in this study.

Funding

This study was supported by earmarked funding grant of Faculty of Medicine Josip Juraj Strossmayer University of Osijek VIF2015-MEFOS-05 “Mechanisms involved in endothelial dysfunction development by acute high salt loading and acute exhausting exercise”; and Osijek-Baranja County project (2014–2016) “Influence of exercise on cardiovascular physiological parameters”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ines Drenjancevic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Carsten Lundby.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stupin, M., Stupin, A., Rasic, L. et al. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. Eur J Appl Physiol 118, 461–474 (2018). https://doi.org/10.1007/s00421-017-3790-y

Download citation

Keywords

  • Acute exercise
  • Microvascular reactivity
  • Hemodynamics
  • Endothelium
  • Oxidative stress