Skip to main content

Co-ingestion of protein or a protein hydrolysate with carbohydrate enhances anabolic signaling, but not glycogen resynthesis, following recovery from prolonged aerobic exercise in trained cyclists

Abstract

Purpose

The effect of carbohydrate (CHO), or CHO supplemented with either sodium caseinate protein (CHO–C) or a sodium caseinate protein hydrolysate (CHO–H) on the recovery of skeletal muscle glycogen and anabolic signaling following prolonged aerobic exercise was determined in trained male cyclists [n = 11, mean ± SEM age 28.8 ± 2.3 years; body mass (BM) 75.0 ± 2.3 kg; VO2peak 61.3 ± 1.6 ml kg−1 min−1].

Methods

On three separate occasions, participants cycled for 2 h at ~ 70% VO2peak followed by a 4-h recovery period. Isoenergetic drinks were consumed at + 0 and + 2 h of recovery containing either (1) CHO (1.2 g kg −1 BM), (2) CHO–C, or (3) CHO–H (1.04 and 0.16 g kg−1 BM, respectively) in a randomized, double-blind, cross-over design. Muscle biopsies from the vastus lateralis were taken prior to commencement of each trial, and at + 0 and + 4 h of recovery for determination of skeletal muscle glycogen, and intracellular signaling associated with protein synthesis.

Results

Despite an augmented insulin response following CHO–H ingestion, there was no significant difference in skeletal muscle glycogen resynthesis following recovery between trials. CHO–C and CHO–H co-ingestion significantly increased phospho-mTOR Ser2448 and 4EBP1 Thr37/46 versus CHO, with CHO–H displaying the greatest change in phospho-4EBP1 Thr37/46. Protein co-ingestion, compared to CHO alone, during recovery did not augment glycogen resynthesis.

Conclusion

Supplementing CHO with intact sodium caseinate or an insulinotropic hydrolysate derivative augmented intracellular signaling associated with skeletal muscle protein synthesis following prolonged aerobic exercise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

4EBP1:

4E binding protein 1

AA:

Amino acids

BCAA:

Branched chain amino acids

BM:

Body mass

BMI:

Body mass index

CHO:

Carbohydrate

CHO–C:

CHO and sodium caseinate

CHO–H:

CHO and sodium caseinate hydrolysate

C max :

Maximal plasma concentration

DPP-IV:

Dipeptidyl peptidase 4

DXA:

Dual energy X-ray absorptiometry

EAA:

Essential amino acids

eEF2:

Eukaryotic elongation factor 2

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HPLC:

High performance liquid chromatography

HR:

Heart rate

HRmax :

Maximum heart rate

LT:

Lactate threshold

MPS:

Muscle protein synthesis

mTOR:

Mechanistic target of rapamycin

OPA:

O-phthalaldehyde

RER:

Respiratory exchange ratio

RPE:

Rating of perceived exertion

RP-UPLC:

Reverse phase ultra-performance liquid chromatography

TAA:

Total amino acids

VO2peak :

Peak oxygen consumption

W max :

Maximum power output

References

  1. Alghannam AF, Jedrzejewski D, Tweddle MG, Gribble H, Bilzon J, Thompson D, Tsintzas K, Betts JA (2016) Impact of muscle glycogen availability on the capacity for repeated exercise in man. Med Sci Sports Exerc 48(1):123–131. https://doi.org/10.1249/mss.0000000000000737

    CAS  Article  PubMed  Google Scholar 

  2. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ (2010) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92(5):1080–1088. https://doi.org/10.3945/ajcn.2010.29819

    CAS  Article  PubMed  Google Scholar 

  3. Beelen M, Burke LM, Gibala MJ, van Loon LJ (2010) Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 20(6):515–532

    CAS  Article  PubMed  Google Scholar 

  4. Berardi JM, Price TB, Noreen EE, Lemon PW (2006) Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc 38(6):1106–1113. https://doi.org/10.1249/01.mss.0000222826.49358.f3

    CAS  Article  PubMed  Google Scholar 

  5. Berardi JM, Noreen EE, Lemon PW (2008) Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Int Soc Sports Nutr 5:24. https://doi.org/10.1186/1550-2783-5-24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71(2):140–150. https://doi.org/10.1111/j.1748-1716.1967.tb03720.x

    CAS  Article  PubMed  Google Scholar 

  7. Burke LM, van Loon LJ, Hawley JA (2016) Post-exercise muscle glycogen resynthesis in humans. J Appl Physiol 122(5):1055–1067. https://doi.org/10.1152/japplphysiol.00860.2016

    Article  PubMed  Google Scholar 

  8. Calbet JA, Holst JJ (2004) Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 43(3):127–139. https://doi.org/10.1007/s00394-004-0448-4

    CAS  Article  PubMed  Google Scholar 

  9. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 96(6):1454–1464. https://doi.org/10.3945/ajcn.112.037556

    CAS  Article  PubMed  Google Scholar 

  10. Claessens M, Saris WH, van Baak MA (2008) Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br J Nutr 100(1):61–69. https://doi.org/10.1017/s0007114507886314

    CAS  Article  PubMed  Google Scholar 

  11. Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrao ME, Jannig PR, Costa LA, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 594(18):5209–5222. https://doi.org/10.1113/jp272472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. de Oliveira EP, Burini RC (2014) Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients 6(10):4191–4199. https://doi.org/10.3390/nu6104191

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    CAS  Article  PubMed  Google Scholar 

  14. Dorresteijn RC, Berwald LG, Zomer G, de Gooijer CD, Wieten G, Beuvery EC (1996) Determination of amino acids using o-phthalaldehyde-2-mercaptoethanol derivatization effect of reaction conditions. J Chromatogr A 724(1):159–167. https://doi.org/10.1016/0021-9673(95)00927-2

    CAS  Article  Google Scholar 

  15. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294(2):E392–E400. https://doi.org/10.1152/ajpendo.00582.2007

    CAS  Article  PubMed  Google Scholar 

  16. Farnfield MM, Trenerry C, Carey KA, Cameron-Smith D (2009) Plasma amino acid response after ingestion of different whey protein fractions. Int J Food Sci Nutr 60(6):476–486. https://doi.org/10.1080/09637480701833465

    CAS  Article  PubMed  Google Scholar 

  17. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582(Pt 2):813–823. https://doi.org/10.1113/jphysiol.2007.134593

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295(3):E595–E604. https://doi.org/10.1152/ajpendo.90411.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Haghighat A, Mader S, Pause A, Sonenberg N (1995) Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. Embo J 14(22):5701–5709

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol 110(3):834–845. https://doi.org/10.1152/japplphysiol.00949.2010

    CAS  Article  PubMed  Google Scholar 

  21. Hayot M, Michaud A, Koechlin C, Caron MA, Leblanc P, Prefaut C, Maltais F (2005) Skeletal muscle microbiopsy: a validation study of a minimally invasive technique. Eur Respir J 25(3):431–440. https://doi.org/10.1183/09031936.05.00053404

    CAS  Article  PubMed  Google Scholar 

  22. Howarth KR, Moreau NA, Phillips SM, Gibala MJ (2009) Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 106(4):1394–1402. https://doi.org/10.1152/japplphysiol.90333.2008C2-19036894

    CAS  Article  PubMed  Google Scholar 

  23. Ivy JL, Goforth HW Jr, Damon BM, McCauley TR, Parsons EC, Price TB (2002) Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol 93(4):1337–1344. https://doi.org/10.1152/japplphysiol.00394.2002

    CAS  Article  PubMed  Google Scholar 

  24. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64(4):1480–1485

    CAS  Article  PubMed  Google Scholar 

  25. Koopman R, Crombach N, Gijsen AP, Walrand S, Fauquant J, Kies AK, Lemosquet S, Saris WH, Boirie Y, van Loon LJ (2009) Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am J Clin Nutr 90(1):106–115. https://doi.org/10.3945/ajcn.2009.27474

    CAS  Article  PubMed  Google Scholar 

  26. Lacroix IME, Li-Chan ECY (2012) Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Inter Dairy J 25(2):97–102. https://doi.org/10.1016/j.idairyj.2012.01.003

    CAS  Article  Google Scholar 

  27. Lacroix IME, Chen XM, Kitts DD, Li-Chan ECY (2017) Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct 8(2):701–709. https://doi.org/10.1039/c6fo01411a

    CAS  Article  PubMed  Google Scholar 

  28. Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107(5):1655–1662. https://doi.org/10.1152/japplphysiol.91234.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Moore DR, Camera DM, Areta JL, Hawley JA (2014) Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab 39(9):987–997. https://doi.org/10.1139/apnm-2013-0591

    CAS  Article  PubMed  Google Scholar 

  30. Morifuji M, Ishizaka M, Baba S, Fukuda K, Matsumoto H, Koga J, Kanegae M, Higuchi M (2010) Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects. J Agric Food Chem 58(15):8788–8797. https://doi.org/10.1021/jf101912n

    CAS  Article  PubMed  Google Scholar 

  31. Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C, McLaughlan S, Nouet Y, Pause A, Pollak M, Gottlieb E, Larsson O, St-Pierre J, Topisirovic I, Sonenberg N (2013) mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18(5):698–711. https://doi.org/10.1016/j.cmet.2013.10.001

    CAS  Article  PubMed  Google Scholar 

  32. Morton RW, McGlory C, Phillips SM (2015) Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol 6:245. https://doi.org/10.3389/fphys.2015.00245

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nilsson M, Stenberg M, Frid AH, Holst JJ, Bjorck IM (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80(5):1246–1253

    CAS  PubMed  Google Scholar 

  34. Nongonierma AB, FitzGerald RJ (2015) Bioactive properties of milk proteins in humans: a review. Peptides 73:20–34. https://doi.org/10.1016/j.peptides.2015.08.009

    CAS  Article  PubMed  Google Scholar 

  35. Phillips SM (2016) The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr Metab (Lond) 13:64. https://doi.org/10.1186/s12986-016-0124-8

    Article  Google Scholar 

  36. Power O, Hallihan A, Jakeman P (2009) Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 37(2):333–339. https://doi.org/10.1007/s00726-008-0156-0

    CAS  Article  PubMed  Google Scholar 

  37. Power-Grant O, McCormack WG, Ramia De Cap M, Amigo-Benavent M, Fitzgerald RJ, Jakeman P (2016) Evaluation of the antioxidant capacity of a milk protein matrix in vitro and in vivo in women aged 50–70 years. Int J Food Sci Nutr 67(3):325–334. https://doi.org/10.3109/09637486.2016.1153607

    CAS  Article  PubMed  Google Scholar 

  38. Price TB, Rothman DL, Taylor R, Avison MJ, Shulman GI, Shulman RG (1994) Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases. J Appl Physiol 76(1):104–111

    CAS  Article  PubMed  Google Scholar 

  39. Redpath NT, Price NT, Severinov KV, Proud CG (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213(2):689–699

    CAS  Article  PubMed  Google Scholar 

  40. Reidy PT, Konopka AR, Hinkley JM, Undem MK, Harber MP (2014) The effect of feeding during recovery from aerobic exercise on skeletal muscle intracellular signaling. Int J Sport Nutr Exerc Metab 24(1):70–78. https://doi.org/10.1123/ijsnem.2013-0096

    CAS  Article  PubMed  Google Scholar 

  41. Rose AJ, Bisiani B, Vistisen B, Kiens B, Richter EA (2009) Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. Am J Physiol Regul Integr Comp Physiol 296(2):R326–R333. https://doi.org/10.1152/ajpregu.90806.2008

    CAS  Article  PubMed  Google Scholar 

  42. Schoenfeld BJ, Aragon AA, Krieger JW (2013) The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J Int Soc Sports Nutr 10(1):53. https://doi.org/10.1186/1550-2783-10-53

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107(3):987–992. https://doi.org/10.1152/japplphysiol.00076.2009

    CAS  Article  PubMed  Google Scholar 

  44. Turnell DC, Cooper JD (1982) Rapid assay for amino acids in serum or urine by pre-column derivatization and reversed-phase liquid chromatography. Clin Chem 28(3):527–531

    CAS  PubMed  Google Scholar 

  45. Upshaw AU, Wong TS, Bandegan A, Lemon PW (2016) Cycling time trial performance 4 h after glycogen-lowering exercise is similarly enhanced by recovery nondairy chocolate beverages versus chocolate milk. Int J Sport Nutr Exerc Metab 26(1):65–70. https://doi.org/10.1123/ijsnem.2015-0056

    Article  PubMed  Google Scholar 

  46. van Loon LJ (2007) Application of protein or protein hydrolysates to improve postexercise recovery. Int J Sport Nutr Exerc Metab 17:S104–S117

    Article  PubMed  Google Scholar 

  47. van Hall G, Shirreffs SM, Calbet JA (2000) Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol 88(5):1631–1636

    Article  PubMed  Google Scholar 

  48. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ (2000) Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 72(1):106–111

    PubMed  Google Scholar 

  49. Winter EJ, Jones AM, Davison RC, Bromley P, Mercer T (2007) Sport and exercise physiology testing guidelines: volume I—sport testing: the british association of sport and exercise sciences guide, vol 1. Routledge, Oxon, UK

  50. Zawadzki KM, Yaspelkis BB 3rd, Ivy JL (1992) Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 72(5):1854–1859

    CAS  Article  PubMed  Google Scholar 

  51. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. https://doi.org/10.1038/nrm3025

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Will McCormack and Prof. Phil Jakeman (University of Limerick, Ireland) for technical assistance with the analysis of plasma amino acid concentrations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brendan Egan.

Ethics declarations

Funding

This work was supported by Food for Health Ireland (F.H.I) and Enterprise Ireland (Grant No.: TC2013001).

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cogan, K.E., Evans, M., Iuliano, E. et al. Co-ingestion of protein or a protein hydrolysate with carbohydrate enhances anabolic signaling, but not glycogen resynthesis, following recovery from prolonged aerobic exercise in trained cyclists. Eur J Appl Physiol 118, 349–359 (2018). https://doi.org/10.1007/s00421-017-3775-x

Download citation

Keywords

  • Nutrition
  • Supplementation
  • Protein synthesis
  • Sodium caseinate
  • Cycling