Skip to main content

Advertisement

Log in

The role of shear stress on cutaneous microvascular endothelial function in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies suggest that exercise and heat stress improve cutaneous endothelial function, caused by increases in shear stress. However, as vasodilatation in the skin is primarily a thermogenic phenomenon, we investigated if shear stress alone without increases in skin temperature that occur with exercise and heat stress increases endothelial function. We examined the hypothesis that repeated bouts of brief occlusion would improve cutaneous endothelial function via shear stress-dependent mechanisms.

Methods

Eleven males underwent a shear stress intervention (forearm occlusion 5 s rest 10 s) for 30 min, five times·week−1 for 6 weeks on one arm, the other was an untreated control. Skin blood flow was measured using laser-Doppler flowmetry, and endothelial function was assessed with and without NOS-inhibition with L-NAME in response to three levels of local heating (39, 42, and 44 °C), ACh administration, and reactive hyperaemia. Data are cutaneous vascular conductance (CVC, laser-Doppler/blood pressure).

Results

There were no changes in the control arm (all d ≤ 0.2, p > 0.05). In the experimental arm, CVC to 39 °C was increased after 3 and 6 weeks (d = 0.6; p ≤ 0.01). Nitric oxide contribution was increased after 6 weeks compared to baseline (d = 0.85, p < 0.001). Following skin heating to 42 °C and 44 °C, CVC was not different at weeks 3 or 6 (d ≤ 0.8, p > 0.05). For both 42 and 44 °C, nitric oxide contribution was increased after weeks 3 and 6 (d ≥ 0.4, p < 0.03). Peak and area-under-the-curve responses to ACh increased following 6 weeks (p < 0.001).

Conclusions

Episodic increases in shear stress, without changes in skin or core temperature, elicit an increase in cutaneous microvascular reactivity and endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area-under-the-cruve

COX:

Cyclooxygenase

CVC:

Cutaneous vascular conductance

EDHF:

Endothelial-derived hyperpolarizing factor

eNOS:

Endothelial nitric oxide synthase

LDF:

Laser-Doppler flux

MAP:

Mean arterial pressure

mC:

Millicoulombs

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PU:

Perfusion units

PORH:

Post-occlusive reactive hyperaemia

Tloc :

Local skin temperature

Tforearm :

Mean forearm temperature

Tsk :

Mean whole body skin temperature

References

  • Binggeli C, Spieker LE, Corti R, Sudano I, Stojanovic V, Hayoz D, Luscher TF, Noll G (2003) Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? J Am Coll Cardiol 42(1):71–77

    Article  CAS  Google Scholar 

  • Black MA, Green DJ, Cable NT (2008) Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J Physiol 586(14):3511–3524. doi:10.1113/jphysiol.2008.153742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boegli Y, Gremion G, Golay S, Kubli S, Liaudet L, Leyvraz PF, Waeber B, Feihl F (2003) Endurance training enhances vasodilation induced by nitric oxide in human skin. J Invest Dermatol 121(5):1197–1204

    Article  CAS  Google Scholar 

  • Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2(2):1143–1211

    PubMed  PubMed Central  Google Scholar 

  • Brunt VE, Minson CT (2012) KCa channels and epoxyeicosatrienoic acids: major contributors to thermal hyperaemia in human skin. J Physiol 590(Pt 15):3523–3534. doi:10.1113/jphysiol.2012.236398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunt VE, Eymann TM, Francisco MA, Howard MJ, Minson CT (2016a) Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J Appl Physiol (1985) 121(3):716–723. doi:10.1152/japplphysiol.00424.2016

    Article  CAS  Google Scholar 

  • Brunt VE, Howard MJ, Francisco MA, Ely BR, Minson CT (2016b) Passive heat therapy improves endothelial function, arterial stiffness and blood pressure in sedentary humans. J Physiol 594(18):5329–5342. doi:10.1113/JP272453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter TD, Hallam TJ, Cusack NJ, Pearson JD (1988) Regulation of P2y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol 95(4):1181–1190

    Article  CAS  Google Scholar 

  • Carter HH, Spence AL, Atkinson CL, Pugh CJ, Cable NT, Thijssen DH, Naylor LH, Green DJ (2014) Distinct effects of blood flow and temperature on cutaneous microvascular adaptation. Med Sci Sports Exerc 46(11):2113–2121. doi:10.1249/MSS.0000000000000349

    Article  PubMed  Google Scholar 

  • Choi PJ, Brunt VE, Fujii N, Minson CT (2014) New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. J Appl Physiol (1985) 117(3):277–283. doi:10.1152/japplphysiol.01397.2013

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Dakak N, Husain S, Mulcahy D, Andrews NP, Panza JA, Waclawiw M, Schenke W, Quyyumi AA (1998) Contribution of nitric oxide to reactive hyperemia: impact of endothelial dysfunction. Hypertension 32(1):9–15

    Article  CAS  Google Scholar 

  • Davis KR, Ponnampalam J, Hayman R, Baker PN, Arulkumaran S, Donnelly R (2001) Microvascular vasodilator response to acetylcholine is increased in women with pre-eclampsia. BJOG 108(6):610–614

    CAS  PubMed  Google Scholar 

  • de Moraes R, Van Bavel D, Gomes Mde B, Tibirica E (2016) Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study. BMC Cardiovasc Disord 16:23. doi:10.1186/s12872-016-0191-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1):1–25

    Article  CAS  Google Scholar 

  • Green DJ, Carter HH, Fitzsimons MG, Cable NT, Thijssen DH, Naylor LH (2010) Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans. J Physiol 588(Pt 9):1571–1577. doi:10.1113/jphysiol.2010.186965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DJ, Spence A, Halliwill JR, Cable NT, Thijssen DH (2011) Exercise and vascular adaptation in asymptomatic humans. Exp Physiol 96(2):57–70. doi:10.1113/expphysiol.2009.048694

    Article  PubMed  Google Scholar 

  • Hellsten Y, Nyberg M, Jensen LG, Mortensen SP (2012) Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590(24):6297–6305. doi:10.1113/jphysiol.2012.240762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges GJ, Del Pozzi AT (2014) Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation. Microvasc Res 93:87–91. doi:10.1016/j.mvr.2014.04.002

    Article  PubMed  Google Scholar 

  • Hodges GJ, Sparks PA (2013) Contributions of endothelial nitric oxide synthase, noradrenaline, and neuropeptide Y to local warming-induced cutaneous vasodilatation in men. Microvasc Res 90:128–134. doi:10.1016/j.mvr.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Hodges GJ, Sparks PA (2014) Noradrenaline and neuropeptide Y contribute to initial, but not sustained, vasodilatation in response to local skin warming in humans. Exp Physiol 99(2):381–392. doi:10.1113/expphysiol.2013.075549

    Article  CAS  PubMed  Google Scholar 

  • Hodges GJ, Kosiba WA, Zhao K, Johnson JM (2008) The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. J Appl Physiol 105(1):233–240. doi:10.1152/japplphysiol.90412.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges GJ, Sharp L, Clements RE, Goldspink DF, George KP, Cable NT (2010a) Influence of age, sex, and aerobic capacity on forearm and skin blood flow and vascular conductance. Eur J Appl Physiol 109(6):1009–1015. doi:10.1007/s00421-010-1441-7

    Article  PubMed  Google Scholar 

  • Hodges GJ, Sharp L, Stephenson C, Patwala AY, George KP, Goldspink DF, Tim Cable N (2010b) The effect of 48 weeks of aerobic exercise training on cutaneous vasodilator function in post-menopausal females. Eur J Appl Physiol 108(6):1259–1267. doi:10.1007/s00421-009-1330-0

    Article  PubMed  Google Scholar 

  • Hodges GJ, Nawaz S, Tew GA (2014) Evidence that reduced nitric oxide signal contributes to cutaneous microvascular dysfunction in peripheral arterial disease. Clin Hemorheol Microcirc. doi:10.3233/CH-141838

    Article  Google Scholar 

  • Houghton BL, Meendering JR, Wong BJ, Minson CT (2006) Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin. J Physiol 572(Pt 3):811–820. doi:10.1113/jphysiol.2005.104067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L (2011) The impact of ischemic postconditioning on ischemic skin flap injuries. Wounds 23(11):328–331

    PubMed  Google Scholar 

  • Iredahl F, Tesselaar E, Sarker S, Farnebo S, Sjoberg F (2013) The microvascular response to transdermal iontophoresis of insulin is mediated by nitric oxide. Microcirculation 20(8):717–723. doi:10.1111/micc.12071

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM (1990) The cutaneous circulation. Laser-Doppler Blood Flowmetry. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Johnson JM, Minson CT, Kellogg DL (2014) Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation. Compr Physiol 4:33–89

    Article  Google Scholar 

  • Kellogg DL Jr, Zhao JL, Coey U, Green JV (2005) Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J Appl Physiol 98(2):629–632. doi:10.1152/japplphysiol.00728.2004

    Article  CAS  PubMed  Google Scholar 

  • Kellogg DL Jr, Zhao JL, Wu Y (2008) Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. Am J Physiol Heart Circ Physiol 295(1):H123-129. doi:10.1152/ajpheart.00082.2008

    Article  CAS  Google Scholar 

  • Kellogg DL Jr, Zhao JL, Wu Y (2009) Roles of nitric oxide synthase isoforms in cutaneous vasodilation induced by local warming of the skin and whole body heat stress in humans. J Appl Physiol 107(5):1438–1444. 10.1152/japplphysiol.00690.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller A, Sun D, Huang A, Kaley G (1994) Corelease of nitric oxide and prostaglandins mediates flow-dependent dilation of rat gracilis muscle arterioles. Am J Physiol 267(1 Pt 2):H326–H332

    CAS  PubMed  Google Scholar 

  • Kraemer R, Lorenzen J, Kabbani M, Herold C, Busche M, Vogt PM, Knobloch K (2011) Acute effects of remote ischemic preconditioning on cutaneous microcirculation—a controlled prospective cohort study. BMC Surg 11:32. doi:10.1186/1471-2482-11-32

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K, Mack GW (2006) Role of nitric oxide in methacholine-induced sweating and vasodilation in human skin. J Appl Physiol (1985) 100(4):1355–1360. doi:10.1152/japplphysiol.00122.2005

    Article  CAS  Google Scholar 

  • Lorenzo S, Minson CT (2007) Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. J Physiol 585(Pt 1):295–303. doi:10.1113/jphysiol.2007.143867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallette MM, Hodges GJ, McGarr GW, Gabriel DA, Cheung SS (2016) Investigating the roles of core and local temperature on forearm skin blood flow. Microvasc Res 106:88–95. doi:10.1016/j.mvr.2016.03.010

    Article  PubMed  Google Scholar 

  • Mallette MM, Hodges GJ, McGarr GW, Gabriel DA, Cheung SS (2017) Spectral analysis of reflex cutaneous vasodilatation during passive heat stress. Microvasc Res 111:42–48. doi:10.1016/j.mvr.2016.12.010

    Article  PubMed  Google Scholar 

  • Medow MS, Minson CT, Stewart JM (2005) Decreased microvascular nitric oxide-dependent vasodilation in postural tachycardia syndrome. Circulation 112(17):2611–2618. doi:10.1161/CIRCULATIONAHA.104.526764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen SP, Gonzalez-Alonso J, Damsgaard R, Saltin B, Hellsten Y (2007) Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. The Journal of physiology

  • Murphy MS, Vignarajah M, Smith GN (2014) Increased microvascular vasodilation and cardiovascular risk following a pre-eclamptic pregnancy. Physiol Rep 2 (11). doi:10.14814/phy2.12217

  • Naylor LH, Carter H, FitzSimons MG, Cable NT, Thijssen DH, Green DJ (2011) Repeated increases in blood flow, independent of exercise, enhance conduit artery vasodilator function in humans. Am J Physiol Heart Circ Physiol 300(2):H664-669. doi:10.1152/ajpheart.00985.2010

    Article  CAS  Google Scholar 

  • Öberg PA (1990) Laser-Doppler flowmetry. Crit Rev Biomed Eng 18:125–163

    PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean sufrace temperature of the human body. J Appl Physiol 19:531–533

    Article  CAS  Google Scholar 

  • Rees R, Smith D, Li TD, Cashmer B, Garner W, Punch J, Smith DJ Jr (1994) The role of xanthine oxidase and xanthine dehydrogenase in skin ischemia. J Surg Res 56(2):162–167. doi:10.1006/jsre.1994.1027

    Article  CAS  PubMed  Google Scholar 

  • Saumet JL, Kellogg DL Jr, Taylor WF, Johnson JM (1988) Cutaneous laser-Doppler flowmetry: influence of underlying muscle blood flow. J Appl Physiol 65(1):478–481

    Article  CAS  Google Scholar 

  • Sawilowsky S (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8(2):467–474

    Article  Google Scholar 

  • Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96(9):822–828. doi:10.1113/expphysiol.2010.056176

    Article  PubMed  PubMed Central  Google Scholar 

  • Tew GA, George KP, Cable NT, Hodges GJ (2011a) Endurance exercise training enhances cutaneous microvascular reactivity in post-menopausal women. Microvasc Res. doi:10.1016/j.mvr.2011.09.002

    Article  PubMed  Google Scholar 

  • Tew GA, Klonizakis M, Moss J, Ruddock AD, Saxton JM, Hodges GJ (2011b) Role of sensory nerves in the rapid cutaneous vasodilator response to local heating in young and older endurance-trained and untrained men. Exp Physiol 96(2):163–170. doi:10.1113/expphysiol.2010.055434

    Article  PubMed  Google Scholar 

  • Tew GA, Saxton JM, Klonizakis M, Moss J, Ruddock AD, Hodges GJ (2011c) Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating. J Appl Physiol 110(5):1264–1270. doi:10.1152/japplphysiol.01423.2010

    Article  PubMed  Google Scholar 

  • Tew GA, Saxton JM, Hodges GJ (2012) Exercise training and the control of skin blood flow in older adults. J Nutr Health Aging 16(3):237–241

    Article  CAS  Google Scholar 

  • Thijssen DH, Tinken TM, Hopkins N, Dawson EA, Cable NT, Green DJ (2011) The impact of exercise training on the diameter dilator response to forearm ischaemia in healthy men. Acta Physiol (Oxf) 201(4):427–434. doi:10.1111/j.1748-1716.2010.02213.x

    Article  CAS  Google Scholar 

  • Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55(2):312–318. doi:10.1161/HYPERTENSIONAHA.109.146282

    Article  CAS  PubMed  Google Scholar 

  • Vissing SF, Secher NH, Victor RG (1997) Mechanisms of cutaneous vasoconstriction during upright posture. Acta Physiol Scand 159(2):131–138. doi:10.1046/j.1365-201X.1997.573344000.x

    Article  CAS  PubMed  Google Scholar 

  • Walshe TE, Ferguson G, Connell P, O’Brien C, Cahill PA (2005) Pulsatile flow increases the expression of eNOS, ET-1, and prostacyclin in a novel in vitro coculture model of the retinal vasculature. Invest Ophthalmol Vis Sci 46(1):375–382. doi:10.1167/iovs.04-0806

    Article  PubMed  Google Scholar 

  • Wong BJ, Fieger SM (2010) Transient receptor potential vanilloid type-1 (TRPV-1) channels contribute to cutaneous thermal hyperaemia in humans. J Physiol 588(Pt 21):4317–4326. doi:10.1113/jphysiol.2010.195511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong BJ, Minson CT (2011) Altered thermal hyperaemia in human skin by prior desensitization of neurokinin-1 receptors. Exp Physiol 96(6):599–609. doi:10.1113/expphysiol.2011.057356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong BJ, Wilkins BW, Holowatz LA, Minson CT (2003) Nitric oxide synthase inhibition does not alter the reactive hyperemic response in the cutaneous circulation. J Appl Physiol 95(2):504–510. doi:10.1152/japplphysiol.00254.2003

    Article  CAS  PubMed  Google Scholar 

  • Zahir KS, Syed SA, Zink JR, Restifo RJ, Thomson JG (1998) Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model. Plast Reconstr Surg 102(1):140–150 (discussion 151-142)

    Article  CAS  Google Scholar 

  • Zhao JL, Pergola PE, Roman LJ, Kellogg DL Jr (2004) Bioactive nitric oxide concentration does not increase during reactive hyperemia in human skin. J Appl Physiol 96(2):628–632. doi:10.1152/japplphysiol.00639.2003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants for volunteering their time and effort in this study.

Author information

Authors and Affiliations

Authors

Contributions

G.J.H. conceived the experiments. G.J.H., D.G.S, P.J.D., and S.S.C designed the experiments. G.J.H., D.G.S, and P.J.D. collected and analyzed the data. G.J.H., D.G.S, P.J.D., and S.S.C interpreted the data. G.J.H drafted the manuscript. G.J.H., D.G.S, P.J.D., and S.S.C revised the manuscript critically for intellectual content. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify of authorship are listed.

Corresponding author

Correspondence to Stephen S. Cheung.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Funding

The study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (#227912-12, S.S. Cheung). S.S. Cheung is supported by a Canada Research Chair.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodges, G.J., Stewart, D.G., Davison, P.J. et al. The role of shear stress on cutaneous microvascular endothelial function in humans. Eur J Appl Physiol 117, 2457–2468 (2017). https://doi.org/10.1007/s00421-017-3732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3732-8

Keywords

Navigation