Time course of recovery following resistance training leading or not to failure



To describe the acute and delayed time course of recovery following resistance training (RT) protocols differing in the number of repetitions (R) performed in each set (S) out of the maximum possible number (P).


Ten resistance-trained men undertook three RT protocols [S × R(P)]: (1) 3 × 5(10), (2) 6 × 5(10), and (3) 3 × 10(10) in the bench press (BP) and full squat (SQ) exercises. Selected mechanical and biochemical variables were assessed at seven time points (from − 12 h to + 72 h post-exercise). Countermovement jump height (CMJ) and movement velocity against the load that elicited a 1 m s−1 mean propulsive velocity (V1) and 75% 1RM in the BP and SQ were used as mechanical indicators of neuromuscular performance.


Training to muscle failure in each set [3 × 10(10)], even when compared to completing the same total exercise volume [6 × 5(10)], resulted in a significantly higher acute decline of CMJ and velocity against the V1 and 75% 1RM loads in both BP and SQ. In contrast, recovery from the 3 × 5(10) and 6 × 5(10) protocols was significantly faster between 24 and 48 h post-exercise compared to 3 × 10(10). Markers of acute (ammonia, growth hormone) and delayed (creatine kinase) fatigue showed a markedly different course of recovery between protocols, suggesting that training to failure slows down recovery up to 24–48 h post-exercise.


RT leading to failure considerably increases the time needed for the recovery of neuromuscular function and metabolic and hormonal homeostasis. Avoiding failure would allow athletes to be in a better neuromuscular condition to undertake a new training session or competition in a shorter period of time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Analysis of variance

Basal AM:

The same morning of the resistance training protocol at 8:00 h

Basal PM:

The day before the resistance training protocol at 18:00 h


Bench press


Creatine kinase


Countermovement jump


Effect size


Growth hormone


Mean propulsive velocity

Post 0 h:

Immediately following each resistance training protocol (11:00 h)

Post 6 h:

Same evening of resistance training, at 18:00 h

Post 24 h:

24 h after the resistance training protocol

Post 48 h:

48 h after the resistance training protocol

Post 72 h:

72 h after the resistance training protocol


Resistance training


Full back squat


Standard deviation


Testosterone/cortisol ratio

V1 load:

The load that elicited a ~ 1.00 m s−1 mean propulsive velocity


  1. Bartolomei S, Sadres E, Church DD, Arroyo E, Iii JAG, Varanoske AN, Wang R, Beyer KS, Oliveira LP, Stout JR, Hoffman JR (2017) Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol 117(7):1287–1298

    CAS  Article  PubMed  Google Scholar 

  2. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, New Jersey, p 569

    Google Scholar 

  3. Crewther B, Keogh J, Cronin J, Cook C (2006) Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med 36(1):215–238

    Article  PubMed  Google Scholar 

  4. Davies T, Orr R, Halaki M, Hackett D (2016) Effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med 46(4):487–502

    Article  PubMed  Google Scholar 

  5. Folland JP, Irish CS, Roberts JC, Tarr JE, Jones DA (2002) Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med 36(5):370–373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. García-Pallarés J, Sánchez-Medina L, Carrasco L, Díaz A, Izquierdo M (2009) Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol 106(4):629–638

    Article  PubMed  Google Scholar 

  7. García-Pallarés J, Sánchez-Medina L, Pérez CE, Izquierdo-Gabarren M, Izquierdo M (2010) Physiological effects of tapering and detraining in world-class kayakers. Med Sci Sports Exerc 42(6):1209–1214

    PubMed  Google Scholar 

  8. González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Ribas J, López-López C, Mora-Custodio R, Yáñez-García JM, Pareja-Blanco F (2016) Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med 37(4):295–304

    PubMed  Google Scholar 

  9. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG (1994) Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(3):821–829

    CAS  PubMed  Google Scholar 

  10. Gorostiaga EM, Asiáin X, Izquierdo M, Postigo A, Aguado R, Alonso JM, Ibáñez J (2010) Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res 24(4):1138–1149

    Article  PubMed  Google Scholar 

  11. Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Hellsten Y, Cusso R, Guerrero M, Granados C, González-Izal M, Ibáñez J, Izquierdo M (2012) Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One 7(7):e40621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Sánchez-Medina L, Cusso R, Guerrero M, Granados C, González-Izal M, Ibáñez J, Izquierdo M (2014) Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res 28(10):2775–2785

    Article  PubMed  Google Scholar 

  13. Izquierdo M, Häkkinen K, González-Badillo JJ, Ibáñez J, Gorostiaga EM (2002) Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 87(3):264–271

    Article  PubMed  Google Scholar 

  14. Izquierdo M, Ibáñez J, González-Badillo JJ, Häkkinen K, Ratamess NA, Kraemer WJ, French DN, Eslava J, Altadill A, Asiain X, Gorostiaga EM (2006) Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol 100(5):1647–1656

    CAS  Article  PubMed  Google Scholar 

  15. Izquierdo-Gabarren M, González de Txabarri Expósito R, García-Pallarés J, Sánchez-Medina L, De Villarreal ES, Izquierdo M (2010) Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc 42(6):1191–1199

    PubMed  Google Scholar 

  16. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35(4):339–361

    Article  PubMed  Google Scholar 

  17. Kraemer WJ, Ratamess NA (2006) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36(4):674–688

    Article  Google Scholar 

  18. Mora-Rodríguez R, García Pallarés J, López-Samanes A, Ortega JF, Fernández-Elías VE (2012) Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One 7(4):e33807

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mora-Rodríguez R, Pallarés JG, López-Gullón JM, López-Samanes Á, Fernández-Elías VE, Ortega JF (2015) Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport 18(3):338–342

    Article  PubMed  Google Scholar 

  20. Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol 121(1):129–138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R (2013) Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc 45(11):2184–2192

    Article  PubMed  Google Scholar 

  22. Pallarés JG, Sánchez-Medina L, Pérez CE, de La Cruz-Sánchez E, Mora-Rodriguez R (2014) Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci 32(12):1165–1175

    Article  PubMed  Google Scholar 

  23. Pallarés JG, López-Samanes A, Fernández-Elías VE, Aguado-Jiménez R, Ortega JF, Gómez C, Ventura R, Segura J, Mora-Rodríguez R (2015) Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand J Med Sci Sports 25(6):e603-12

    Article  PubMed  Google Scholar 

  24. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Ribas-Serna J, López-López C, Mora-Custodio R, Yáñez-García JM, González-Badillo J (2016) Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin Physiol Funct Imaging. doi:10.1111/cpf.12348

    PubMed  Google Scholar 

  25. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchís-Moysi J, Dorado C, Mora-Custodio R, Yáñez-García JM, Morales-Álamo D, Pérez-Suárez I, Calbet JAL, González-Badillo JJ (2017) Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci 27(7):724–735

    CAS  Article  Google Scholar 

  26. Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ (2009) Progression models in resistance training for healthy adults [ACSM position stand]. Med Sci Sports Exerc 41(3):687–708

    Article  Google Scholar 

  27. Sampson JA, Groeller H (2016) Is repetition failure critical for the development of muscle hypertrophy and strength? Scand J Med Sci Sport 26(4):375–383

    CAS  Article  Google Scholar 

  28. Sanborn K, Boros K, Hruby J, Schilling B, O’bryant HS, Johnson RL, Hoke T, Stone ME, Stone MH (2000) Short-term performance effects of weight training with multiple sets not to failure vs a single set to failure in women. J Strength Cond Res 14(3):328–331

    Google Scholar 

  29. Sánchez-Medina L, González-Badillo JJ (2011) Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc 43(9):1725–1734

    Article  PubMed  Google Scholar 

  30. Sánchez-Medina L, Pérez CE, González-Badillo JJ (2010) Importance of the propulsive phase in strength assessment. Int J Sports Med 31(2):123–129

    Article  PubMed  Google Scholar 

  31. Sánchez-Medina L, González-Badillo JJ, Pérez CE, Pallarés JG (2013) Velocity- and power-load relationships of the bench pull versus bench press exercises. Int J Sports Med 35(03):209–216

    Article  PubMed  Google Scholar 

  32. Sánchez-Medina L, Pallarés JG, Pérez CE, Morán-Navarro R, González Badillo JJ (2017) Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open 1(2):E80–E88

    Article  Google Scholar 

  33. Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38(7):527–540

    Article  PubMed  Google Scholar 

  34. West DW, Phillips SM (2010) Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sports Med 38(3):97–104

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jesús G. Pallarés.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morán-Navarro, R., Pérez, C.E., Mora-Rodríguez, R. et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol 117, 2387–2399 (2017). https://doi.org/10.1007/s00421-017-3725-7

Download citation


  • Muscle strength
  • Weight training
  • Hormonal response
  • Bench press
  • Back squat