Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses

Abstract

Objective

Although neural adaptations from strength training are known to occur, the acute responses associated with heavy-strength (HST) and hypertrophy training (HYT) remain unclear. Therefore, we aimed to compare the acute behaviour of corticospinal responses following a single session of HST vs HYT over a 72-h period.

Methods

Fourteen participants completed a random counterbalanced, crossover study that consisted of a single HST session [5 sets × 3 repetition maximum (RM)], a HYT session (3 sets × 12 RM) of the leg extensors and a control session (CON). Single- and paired-pulse transcranial magnetic stimulation (TMS) was used to measure changes in motor-evoked potential (MEP) amplitude, corticospinal silent period (CSP), intra-cortical facilitation (ICF), short-interval intra-cortical inhibition (SICI) and long-interval intra-cortical inhibition (LICI). Additionally, maximal muscle compound wave (M MAX) of the rectus femoris (RF) and maximal voluntary isometric contraction (MVIC) of the leg extensors were taken. All measures were taken at baseline, immediately post and 2, 6, 24, 48 and 72 h post-training.

Results

A significant condition x time interaction was observed for MVIC (P = 0.001), M MAX (P = 0.003), MEP amplitude (P < 0.001) and CSP (P = 0.002). No differences were observed between HST and HYT for all neurophysiological measures. No changes in SICI, ICF and LICI were observed compared to baseline.

Conclusion

Our results suggest that: (1) the acute behaviour of neurophysiological measures is similar between HST and HYT; and (2) the increase in corticospinal excitability may be a compensatory response to attenuate peripheral fatigue.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CSP:

Corticospinal silent period

HST:

Heavy-strength training

HYT:

Hypertrophy training

TMS:

Transcranial magnetic stimulation

ICF:

Intra-cortical facilitation

LICI:

Long interval cortical inhibition

MEP:

Motor evoked potential

MVIC:

Maximal voluntary isometric contraction

MMAX :

Maximal compound wave

RF:

Rectus femoris

RM:

Repetition maximum

RT:

Resistance training

sEMG:

Surface electromyography

SICI:

Short interval cortical inhibition

References

  1. Ackerley SJ, Stinear CM, Byblow WD (2011) Promoting use-dependent plasticity with externally-paced training. Clin Neurophysiol 122(12):2462–2468

    Article  PubMed  Google Scholar 

  2. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26(4):217–238

    CAS  Article  PubMed  Google Scholar 

  3. Balshaw TG, Fry A, Maden-Wilkinson TM, Kong PW, Folland JP (2017) Relaibility of quadriceps surface electromyography measurements is improved by two vs. single site recordings. Eur J Appl Physiol 117(6):1085–1094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Behm DG, St-Pierre DMM (1997) Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J Appl Physiol 82:1654–1661

    CAS  PubMed  Google Scholar 

  5. Behm DG, Reardon G, Fitzgerald J, Drinkwater E (2002) The effect of 5, 10, and 20 repetition maximums on the recovery of voluntary and evoked contractile properties. J Strength Cond Res 16(2):209–218

    PubMed  Google Scholar 

  6. Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW (2006) Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Exp Brain Res 170:191–198

    Article  PubMed  Google Scholar 

  7. Bompa T, Haff G (2009) Periodization, theory and methodology of training, 5th edn. Human kinetic, ‎Champaign

    Google Scholar 

  8. Brandon R, Howatson G, Strachan F, Hunter AM (2015) Neuromuscular differences to power vs strength back squat exercise in elite athletes. Scand J Med Sci Sports 25:630–639

    CAS  Article  PubMed  Google Scholar 

  9. Brzycki M (1993) Strength testing—predicting a one-rep max from reps to fatigue. JOPERD 64:88–90

    Google Scholar 

  10. Carroll TJ, Selvanayagam VS, Riek S, Semmler JG (2011) Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf) 202(2):119–140. doi:10.1111/j.1748-1716.2011.02271.x

    CAS  Article  Google Scholar 

  11. Christ CB, Slaughter MH, Stillman RJ, Cameron J, Boileau RSA (1994) Reliability of selected parameters of isometric muscle function associated with testing 3 days × 3 trials in women. J Str Cond Res 8:65–71

    Google Scholar 

  12. Christie A, Kamen G (2014) Cortical inhibition is reduced following short-term training in young and older adults. Age (Dodr.) 36(2):749–758

    Article  Google Scholar 

  13. De Gennaro L, Ferrara M, Bertini M, Pauri F, Cristani R, Curcio G, Romei V, Fratello F, Rossini PM (2003) Reproducibility of callosal effects of transcranial magnetic stimulation (TMS) with interhemispheric paired pulses. Neurosci Res 46:219–227

    Article  PubMed  Google Scholar 

  14. Deschenes M, Maresh C, Kraemer W (1994) The neuromuscular junction: structure, function, and its role in excitation of the muscle. J Strength Cond Res 8(2):103–109

    Google Scholar 

  15. Doguet V, Jubeau M (2014) Reliability of H-reflex in vastus lateralis and vastus medialis muscles during passive and active isometric conditions. Eur J Appl Physiol. doi:10.1007/s00421-014-2969-8

    PubMed  Google Scholar 

  16. Du X, Summerfelt A, Chiappelli J, Holcomb HH, Hong LE (2014) Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav 46:39–48. doi:10.1080/00222895.2013.850401

    Article  PubMed  Google Scholar 

  17. Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologica 36(1):37–43

    CAS  Article  Google Scholar 

  18. Field A (2013) Discovering statistics using IBM SPSS statistics, 3rd edn. SAGE publications, London, p 459

    Google Scholar 

  19. Folland JP, Williams AG (2007) Morphological and neurological contributions to increased strength. Sports Med 37(2):145–168

    Article  PubMed  Google Scholar 

  20. Gandevia SC, Butler JE, Allen GM, Taylor JL (1994) Prolongation of the ‘silent’ period following transcranial magnetic stimulation during human muscle fatigue. J Physiol 480:110

    Google Scholar 

  21. Haff GG, Triplett TN (2016) Essentials of strength training and conditioning. NSCA-National Strength and Conditioning Association, 4th edn, 5th edn. Human kinetic, ‎Champaign

    Google Scholar 

  22. Gruet M, Temesi J, Rupp T, Levy P, Verges S, Millet GY (2014) Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Exp Physiol 99(8):1053–1064

    Article  PubMed  Google Scholar 

  23. Hendy AM, Kidgell DJ (2013) Anodal tDCS applied during strength training enhances motor cortical plascticity. Med Sci Sports Exerc 45(9):1721–1729

    Article  PubMed  Google Scholar 

  24. Hermens HJ, Fririks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyograph Kinesiol 10(5):361–374

    CAS  Article  Google Scholar 

  25. Howatson G, Brandon R, Hunter AM (2016) The response to and recovery from maximum-strength and -power training in elite track and field athletes. Int J Sports Physiol Peform 11:356–362

    Article  Google Scholar 

  26. Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL (2016) Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Exp Brain Res 234(9):2541–2551

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kidgell DJ, Pearce AJ (2010) Corticospinal properties following short-term strength training of an intrinsic hand muscle. Hum Mov Sci 29:631–641. doi:10.1016/j.humov.2010.01.004

    Article  PubMed  Google Scholar 

  28. Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89(6):415–423

    CAS  Article  PubMed  Google Scholar 

  29. Kim PL, Staron RS, Phillips SM (2005) Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568(1):283–290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kirkendall DT (1990) Mechanisms of peripheral fatigue. Med Sci Sports Exerc 22(4):444–449

    CAS  Article  PubMed  Google Scholar 

  31. Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2(3):145–156

    Article  PubMed  Google Scholar 

  32. Krishnan C, Allen EJ, Williams GN (2011) Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 43(4):563–573

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J (2004) Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. J Physiol 449(1):56–65

    CAS  Google Scholar 

  34. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471(1):501–519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Latella C, Kidgell DJ, Pearce A (2012) Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training. Eur J Appl Physio 112:3097–3310. doi:10.1007/s00421-011-2289-1

    Article  Google Scholar 

  36. Latella C, Hendy AM, Pearce AJ, VanderWesthuizen D, Teo W-P (2016) The time-course of acute changes in corticospinal excitability, intra-cortical inhibition and facilitation following a single-session heavy strength training of the biceps brachii. Front Hum Neurosci 10:607

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leung M, Rantalainen T, Teo W-P, Kidgell D (2015) Motor cortex excitability is not differentially modulated following skill and strength training. Neurosci 305:99–108

    CAS  Article  Google Scholar 

  38. McNeil CJ, Martin PG, Gandevia SC, Taylor JL (2011) Long-interval intracortical inhibition in a human hand muscle. Exp Brain Res 209:287–297

    Article  PubMed  Google Scholar 

  39. Mileva KN, Sumners DP, Bowtell JL (2012) Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles. Eur J Appl Physiol 112:3959–3970. doi:10.1007/s00421-012-2381-1

    CAS  Article  PubMed  Google Scholar 

  40. Nicholson G, Mcloughlin G, Bissas A, Iszpoglou T (2014) Do the acute biochemical and neuromuscular responses justify the classification of strength- and hypertrophy-type resistance exercise? J Stength Cond Res 28(11):3188–3199

    Article  Google Scholar 

  41. Nielsen OB, Clausen T (2000) The N+/K+ pump protects muscle excitability and contractility during exercise. Exerc Sport Sci Rev 28:159–164

    CAS  PubMed  Google Scholar 

  42. Nuzzo JL, Barry BK, Gandevia SC, Taylor JL (2016a) Acute strength training increases responses to stimulation of corticospinal axons. Med Sci Sports Exerc 48(1):139–150

    Article  PubMed  Google Scholar 

  43. Nuzzo JL, Barry BK, Gandevia SC, Taylor JL (2016b) Stability of the biceps brachii M MAX with one session of strength training. Muscle Nerve 54:791–793

    Article  PubMed  Google Scholar 

  44. Nuzzo JL, Trajano GS, Barry BK, Gandevia SC, Taylor JL (2016c) Arm-posture-dependent changes in corticospinal excitability are largely spinal in origin. J Neurophysiol 115:2076–2082

    Article  PubMed  PubMed Central  Google Scholar 

  45. Orth M, Rothwell JC (2004) The cortical silent period; intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clin Neurophysiol 115(5):1076–1082

    CAS  Article  PubMed  Google Scholar 

  46. Orth M, Snijders Ah, Rothwell JC (2003) The variability of intracortical inhibition and facilitation. Clin Neurophysiol 114(12):2362–2369

    CAS  Article  PubMed  Google Scholar 

  47. Overend T, Anderson C, Sawant A, Perryman B, Locking-Cusolito H (2010) Relative and absolute reliability of physical function measures in people with end-stage renal disease. Physiother Can 62(2):122–128

    Article  PubMed  PubMed Central  Google Scholar 

  48. Phillips SM, Roy PG, Tipton KD, Wolfe RR, Tamopolsky MA (2002) Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Phsyiol Pharmacol 80(11):1045–1053

    CAS  Article  Google Scholar 

  49. Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e3181915670

    Google Scholar 

  50. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The international federation of clinical neurophysiology. Electroenceph Clin Neurophysiol Suppl 52:97–103

    CAS  Google Scholar 

  52. Ruotsalainen I, Ahtiainen J, Kidgell DJ, Avela J (2014) Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. Eur J Appl Physiol 114:1545–1553. doi:10.1007/s00421-014-2884-z

    Article  PubMed  Google Scholar 

  53. Sacco P, Thickbroom GW, Thompson ML, Mastaglia F (1997) Changes in corticomotor excitation and inhibition during prolonged submaximal muscle contractions. Muscle Nerve 20:1158–1166

    CAS  Article  PubMed  Google Scholar 

  54. Sacco P, Thickbroom GW, Byrnes ML, Mastaglia F (2000) Changes in corticomotor excitation after fatiguing muscle contractions. Muscle Nerve 23:1840–1846

    CAS  Article  PubMed  Google Scholar 

  55. Schoenfield BJ, Ratamess NA, Peterson MD, Contreras B, Sonmez GT, ALvar BA (2014) Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res 28(10):2909–2918

    Article  Google Scholar 

  56. Scudese E, Willardson JM, Simao R, Senna G, de Salles BF, Miranda H (2015) The effect of rest interval length on repetition consistency and perceived exertion during near maximal loaded bench press sets. J Strength Cond Res 29(11):3079–3083

    PubMed  Google Scholar 

  57. Selvanayagam VS, Riek S, Carroll TJ (2011) Early neural responses to strength training. J Appl Physiol 111(2):367–375

    Article  PubMed  Google Scholar 

  58. Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus lateralis muscle of young man and women. J Histochem Cytochem 48(5):623–629

    CAS  Article  PubMed  Google Scholar 

  59. Taylor AM, Christou EA, Enoka RM (2003) Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol 90(2):1350–1361

    Article  PubMed  Google Scholar 

  60. Temesi J, Ly SN, Millet GY (2017) Reliability of single- and paired-pulse transcranial magnetic stimulation for the assessment of knee extensor muscle function. J Neurol Sci 375:442–449

    Article  PubMed  Google Scholar 

  61. Teo W-P, Newton MJ, McGuigan MR (2011) Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sports Sci Med 10:600–606

    PubMed  PubMed Central  Google Scholar 

  62. Tucker KJ, Tuncer M, Turker KS (2005) A review of the H-reflex and M-wave in the human triceps surae. Hum Mov Sci 24:667–688

    Article  PubMed  Google Scholar 

  63. Verin E, Ross E, Demoule A, Hopkinson N, Nickol A, Fauroux B, Moxham J, Similowski T, Polkey MI (2004) Effects of exhaustive incremental treadmill exercise on diaphragm and quadriceps motor potentials evoked by transcranial magnetic stimulation. J Appl Physiol 1:253–259

    Google Scholar 

  64. Walker S, Taipale RS, Kai N, Kraemer WJ, Hakkinen K (2011) Neuromuscular and hormonal responses to constant and variable resistance loadings. Med Sci Sports Exerc 43(1):26–33

    CAS  Article  PubMed  Google Scholar 

  65. Walker S, Davis LD, Avela J, Hakkinen K (2012) Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyograph Kinesiol 22:356–362

    Article  Google Scholar 

  66. Westin GG, Bassi BD, Lisanby SH, Luber B (2014) Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications. Clin Neurophysiol 125(1):142–147

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all participants for their contribution to this study. CL is supported by an Australian Postgraduate Award. WPT is supported by an Alfred Deakin Postdoctoral Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Latella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latella, C., Teo, WP., Harris, D. et al. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J Appl Physiol 117, 2211–2224 (2017). https://doi.org/10.1007/s00421-017-3709-7

Download citation

Keywords

  • Transcranial magnetic stimulation
  • Heavy-strength
  • Hypertrophy
  • Neurophysiological
  • Fatigue
  • Recovery