High but not moderate-intensity endurance training increases pain tolerance: a randomised trial



To examine the effect of high-intensity interval training (HIIT) compared to volume-matched moderate-intensity continuous training (CONT) on muscle pain tolerance and high-intensity exercise tolerance.


Twenty healthy adults were randomly assigned (1:1) to either 6 weeks of HIIT [6–8 × 5 min at halfway between lactate threshold and maximal oxygen uptake (50%Δ)] or volume-matched CONT (~60–80 min at 90% lactate threshold) on a cycle ergometer. A tourniquet test to examine muscle pain tolerance and two time to exhaustion (TTE) trials at 50%Δ to examine exercise tolerance were completed pre- and post-training; the post-training TTE trials were completed at the pre-training 50%Δ (same absolute-intensity) and the post-training 50%Δ (same relative-intensity).


HIIT and CONT resulted in similar improvements in markers of aerobic fitness (all P ≥ 0.081). HIIT increased TTE at the same absolute- and relative-intensity as pre-training (148 and 43%, respectively) to a greater extent than CONT (38 and −4%, respectively) (both P ≤ 0.019). HIIT increased pain tolerance (41%, P < 0.001), whereas CONT had no effect (−3%, P = 0.720). Changes in pain tolerance demonstrated positive relationships with changes in TTE at the same absolute- (r = 0.44, P = 0.027) and relative-intensity (r = 0.51, P = 0.011) as pre-training.


The repeated exposure to a high-intensity training stimulus increases muscle pain tolerance, which is independent of the improvements in aerobic fitness induced by endurance training, and may contribute to the increase in high-intensity exercise tolerance following HIIT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Central nervous system


Moderate-intensity continuous training


High-intensity interval training


Heart rate


Blood lactate concentration


Lactate threshold


Lactate turn-point


Maximal voluntary contraction


Same absolute-intensity as pre-training


Same relative-intensity as pre-training


Rating of perceived exertion


Time to exhaustion

\(\dot{V}{\text{O}}_{2}\) :

Oxygen uptake

\(\dot{V}{\text{O}}_{2\hbox{max} }\) :

Maximal oxygen uptake

\(\dot{W}_{ \hbox{max} }\) :

Peak power output


Intensity equivalent to halfway between LT and \(\dot{V}{\text{O}}_{2\hbox{max} }\)


  1. Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045. doi:10.1249/MSS.0b013e31821f59ab

    Article  PubMed  Google Scholar 

  2. Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M (2015) Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci Basic 188:19–23. doi:10.1016/j.autneu.2014.10.018

    Article  Google Scholar 

  3. Anshel MH, Russell KG (1994) Effect of aerobic and strength training on pain tolerance, pain appraisal and mood of unfit males as a function of pain location. J Sports Sci 12:535–547. doi:10.1080/02640419408732204

    CAS  Article  PubMed  Google Scholar 

  4. Borg G, Ljunggren G, Ceci R (1985) The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur J Appl Physiol 54:343–349. doi:10.1007/BF02337176

    CAS  Article  Google Scholar 

  5. Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M (1997) Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29:999–1012. doi:10.1097/00005768-199708000-00004

    CAS  Article  PubMed  Google Scholar 

  6. Daussin FN et al (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264–R272. doi:10.1152/ajpregu.00875.2007

    CAS  Article  PubMed  Google Scholar 

  7. Edge J, Bishop D, Goodman C (2006) The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol 96:97–105. doi:10.1007/s00421-005-0068-6

    CAS  Article  PubMed  Google Scholar 

  8. Hamilton AL, Killian KJ, Summers E, Jones NL (1996) Quantification of intensity of sensations during muscular work by normal subjects. J Appl Physiol 81:1156–1161

    CAS  PubMed  Google Scholar 

  9. Hoffman MD, Shepanski MA, Ruble SB, Valic Z, Buckwalter JB, Clifford PS (2004) Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch Phys Med Rehabil 85:1183–1187. doi:10.1016/j.apmr.2003.09.010

    Article  PubMed  Google Scholar 

  10. Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29:373–386

    CAS  Article  PubMed  Google Scholar 

  11. Jones MD, Booth J, Taylor JL, Barry BK (2014) Aerobic training increases pain tolerance in healthy individuals. Med Sci Sports Exerc 46:1640–1647. doi:10.1249/MSS.0000000000000273

    Article  PubMed  Google Scholar 

  12. Ljunggren G, Ceci R, Karlsson J (1987) Prolonged exercise at a constant load on a bicycle ergometer: ratings of perceived exertion and leg aches and pain as well as measurements of blood lactate accumulation and heart rate. Int J Sports Med 8:109–116. doi:10.1055/s-2008-1025651

    CAS  Article  PubMed  Google Scholar 

  13. Mann T, Lamberts RP, Lambert MI (2013) Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med 43:613–625. doi:10.1007/s40279-013-0045-x

    Article  PubMed  Google Scholar 

  14. Mauger AR (2013) Fatigue is a pain-the use of novel neurophysiological techniques to understand the fatigue-pain relationship. Front Physiol 4:1–4. doi:10.3389/fphys.2013.00104

    Article  Google Scholar 

  15. Mauger AR (2014) Factors affecting the regulation of pacing: current perspectives. Open Access J Sports Med 5:209–214. doi:10.2147/OAJSM.S38599

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261. doi:10.1016/j.pneurobio.2004.03.005

    Article  PubMed  Google Scholar 

  17. O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166

    Article  PubMed  Google Scholar 

  18. O’Leary TJ, Morris MG, Collett J, Howells K (2016) Central and peripheral fatigue following non-exhaustive and exhaustive exercise of disparate metabolic demands. Scand J Med Sci Sports 26:1287–1300. doi:10.1111/sms.12582

    Article  PubMed  Google Scholar 

  19. O’Leary TJ, Collett J, Howells K, Morris MG (2017) Endurance capacity and neuromuscular fatigue following high vs moderate-intensity endurance training: a randomised trial. Scand J Med Sci Sports. doi:10.1111/sms.12854

    PubMed  Google Scholar 

  20. Ord P, Gijsbers K (2003) Pain thresholds and tolerances of competitive rowers and their use of spontaneous self-generated pain-coping strategies. Percept Mot Skills 97:1219–1222. doi:10.2466/pms.2003.97.3f.1219

    CAS  Article  PubMed  Google Scholar 

  21. Pollak KA et al (2014) Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol 99:368–380. doi:10.1113/expphysiol.2013.075812

    CAS  Article  PubMed  Google Scholar 

  22. Poole DC, Gaesser GA (1985) Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 58:1115–1121

    CAS  PubMed  Google Scholar 

  23. Pringle JS, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88:214–226. doi:10.1007/s00421-002-0703-4

    CAS  Article  PubMed  Google Scholar 

  24. Ryan ED, Kovacic CR (1966) Pain tolerance and athletic participation. Percept Mot Skills 22:383–390

    Article  Google Scholar 

  25. Scharhag-Rosenberger F, Meyer T, Gassler N, Faude O, Kindermann W (2010) Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport 13:74–79. doi:10.1016/j.jsams.2008.12.626

    Article  PubMed  Google Scholar 

  26. Scott V, Gijsbers K (1981) Pain perception in competitive swimmers. Br Med J (Clin Res Ed) 283:91–93

    CAS  Article  Google Scholar 

  27. Seiler S, Joranson K, Olesen BV, Hetlelid KJ (2013) Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports 23:74–83. doi:10.1111/j.1600-0838.2011.01351.x

    CAS  Article  PubMed  Google Scholar 

  28. Smirmaul BP (2012) Sense of effort and other unpleasant sensations during exercise: clarifying concepts and mechanisms. Br J Sports Med 46:308–311. doi:10.1136/bjsm.2010.071407

    Article  Google Scholar 

  29. Tajet-Foxell B, Rose FD (1995) Pain and pain tolerance in professional ballet dancers. Br J Sports Med 29:31–34

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48:2294–2306. doi:10.1249/MSS.0000000000000923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W (2012) Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain 153:1253–1262. doi:10.1016/j.pain.2012.03.005

    Article  PubMed  Google Scholar 

  32. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol 75:7–13

    CAS  Article  Google Scholar 

Download references


The authors wish to express gratitude to all research participants.

Author information




The study was designed by TJO, MGM and JC; TJO and MGM collected and analysed the data; TJO, MGM, JC and KH all contributed to preparation of the manuscript. The final manuscript was approved by all authors. The authors declare no conflicts of interest.

Corresponding author

Correspondence to Thomas J. O’Leary.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Leary, T.J., Collett, J., Howells, K. et al. High but not moderate-intensity endurance training increases pain tolerance: a randomised trial. Eur J Appl Physiol 117, 2201–2210 (2017). https://doi.org/10.1007/s00421-017-3708-8

Download citation


  • Central nervous system
  • Exercise tolerance
  • High-intensity interval training
  • Muscle fatigue
  • Muscle pain