Skip to main content
Log in

Different training programs decrease blood pressure during submaximal exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Objective

Our purpose was to study the effects of aerobic, resistance, and mixed (aerobic and resistance) training programs on blood pressure, both at rest and during submaximal exercise in healthy people.

Methods

We randomized 39 physically active, healthy participants into aerobic, resistance, and mixed (aerobic and resistance) exercise groups, and a control group. The exercise groups trained for 60 min three times/week for 6 weeks, and a submaximal cycle ergometer test was performed before and after training, and 3 weeks after detraining. Continuous blood pressure was determined before and during the test.

Results

At the submaximal test, both systolic and diastolic blood pressures decreased significantly (p < 0.05) after detraining in the exercise groups. However, between pre-training and detraining, we found significant reductions at rest only in the mixed exercise group (p < 0.05).

Conclusion

Although all exercise had similar effects on blood pressure during submaximal exercise, the mixed aerobic and resistance exercise may be optimal for blood pressure reduction, by the addition of diverse physiological pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AET:

Aerobic exercise training group

BMI:

Body mass index

BP:

Blood pressure

CON:

Control training group

HR:

Heart rate

MIX:

Mixed aerobic and resistance training group

RET:

Resistance training group

VO2max :

Maximal oxygen uptake

References

  • Bateman LA, Slentz CA, Willis LH et al (2011) Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the studies of a targeted risk reduction intervention through defined exercise—STRRIDE-AT/RT). Am J Cardiol 108:838–844. doi:10.1016/j.amjcard.2011.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouzas-Mosquera MDC, Bouzas-Mosquera A, Peteiro J et al (2014) Exaggerated exercise blood pressure response and risk of stroke in patients referred for stress testing. Eur J Intern Med 25:533–577. doi:10.1016/j.ejim.2014.05.013

    Article  PubMed  Google Scholar 

  • Braith RW, Stewart KJ (2006) Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113:2642–2650. doi:10.1161/CIRCULATIONAHA.105.584060

    Article  PubMed  Google Scholar 

  • Brickman AM, Reitz C, Luchsinger JA et al (2010) Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. Arch Neurol 67:564–569. doi:10.1001/archneurol.2010.70

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell WW, Crim MC, Young VR, Evans WJ (1994) Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr 60:167–175

    CAS  PubMed  Google Scholar 

  • Cauza E, Hanusch-Enserer U, Strasser B et al (2005) The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil 86:1527–1533. doi:10.1016/j.apmr.2005.01.007

    Article  PubMed  Google Scholar 

  • Collier SR, Kanaley JA, Carhart R et al (2008) Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens 22:678–686. doi:10.1038/jhh.2008.36

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen VA, Fagard RH (2005) Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens 23:251–259

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L (2011) Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension 58:950–958. doi:10.1161/HYPERTENSIONAHA.111.177071

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen VA, Buys R, Smart NA (2013) Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens 31:639–648. doi:10.1097/HJH.0b013e32835ca964

    Article  CAS  PubMed  Google Scholar 

  • Corso LML, Macdonald HV, Johnson BT et al (2016) Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med Sci Sports Exerc 48:2398–2406. doi:10.1249/MSS.0000000000001056

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Martin WH, Sinacore DR et al (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol 57:1857

    CAS  PubMed  Google Scholar 

  • Daşkapan A, Tonga E, Durutürk N, Tüzün EH (2012) Effects of two different quadriceps strengthening exercise approaches on cardiovascular fitness in healthy female subjects: a single blind randomized study. J Back Musculoskelet Rehabil 25:81–87. doi:10.3233/BMR-2012-0313

    Article  PubMed  Google Scholar 

  • Dimeo F, Pagonas N, Seibert F et al (2012) Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension 60:653–658. doi:10.1161/HYPERTENSIONAHA.112.197780

    Article  CAS  PubMed  Google Scholar 

  • Eckert S, Horstkotte D (2002) Comparison of Portapres non-invasive blood pressure measurement in the finger with intra-aortic pressure measurement during incremental bicycle exercise. Blood Press Monit 7(3):179–83

    Article  PubMed  Google Scholar 

  • Ezzati M, Lopez AD, Rodgers A et al (2002) Selected major risk factors and global and regional burden of disease. Lancet 360:1347–1360

    Article  PubMed  Google Scholar 

  • Fagard RH (2006) Exercise is good for your blood pressure: effects of endurance training and resistance training. Clin Exp Pharmacol Physiol 33:853–856. doi:10.1111/j.1440-1681.2006.04453.x

    Article  CAS  PubMed  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  • Gremeaux V, Gayda M, Lepers R et al (2012) Exercise and longevity. Maturitas 73:312–317. doi:10.1016/j.maturitas.2012.09.012

    Article  PubMed  Google Scholar 

  • Hagberg JM, Ehsani AA, Goldring D et al (1984) Effect of weight training on blood pressure and hemodynamics in hypertensive adolescents. J Pediatr 104:147–151. doi:10.1016/S0022-3476(84)80615-0

    Article  CAS  PubMed  Google Scholar 

  • Hecksteden A, Kraushaar J, Scharhag-Rosenberger F et al (2015) Individual response to exercise training—a statistical perspective. J Appl Physiol 118:1450–1459. doi:10.1152/japplphysiol.00714.2014

    Article  PubMed  Google Scholar 

  • Heffernan KS, Yoon ES, Sharman JE et al (2012) Resistance exercise training reduces arterial reservoir pressure in older adults with prehypertension and hypertension. Hypertens Res 36:422–427. doi:10.1038/hr.2012.198

    Article  PubMed  Google Scholar 

  • Ho SS, Radavelli-Bagatini S, Dhaliwal SS et al (2012) Resistance, aerobic, and combination training on vascular function in overweight and obese adults. J Clin Hypertens (Greenwich) 14:848–854. doi:10.1111/j.1751-7176.2012.00700.x

    Article  Google Scholar 

  • Janssen I, Leblanc AG (2010) Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 7:1–16

    Article  Google Scholar 

  • Joy EL, Blair SN, McBride P, Sallis R (2013) Physical activity counselling in sports medicine: a call to action. Br J Sports Med 47:49–53

    Article  PubMed  Google Scholar 

  • Kenney WL, Wilmore JH, Costill DL (2012) Physiology of sport and exercise. Champaign, IL: Human Kinetics

  • Laoutaris ID, Adamopoulos S, Manginas A et al (2012) Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study. Int J Cardiol 167:1967–1972. doi:10.1016/j.ijcard.2012.05.019

    Article  PubMed  Google Scholar 

  • Liu S, Goodman J, Nolan R et al (2012a) Blood pressure responses to acute and chronic exercise are related in prehypertension. Med Sci Sports Exerc 44:1644–1652. doi:10.1249/MSS.0b013e31825408fb

    Article  PubMed  Google Scholar 

  • Liu S, Thomas SG, Sasson Z et al (2012b) Blood pressure reduction following prolonged exercise in young and middle-aged endurance athletes. Eur J Prev Cardiol 20:956–962. doi:10.1177/2047487312454759

    Article  PubMed  Google Scholar 

  • Lovell DI, Cuneo R, Gass GC (2009) Strength training improves submaximum cardiovascular performance in older men. J Geriatr Phys Ther 32:117–124

    Article  PubMed  Google Scholar 

  • MacDonald J, MacDougall J, Hogben C (1999) The effects of exercise intensity on post exercise hypotension. J Hum Hypertens 13:527–531. doi:10.1038/sj.jhh.1000866

    Article  CAS  PubMed  Google Scholar 

  • Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536. doi:10.1093/eurheartj/ehm236

    PubMed  Google Scholar 

  • Mora S, Cook N, Buring JE et al (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116:2110–2118. doi:10.1161/CIRCULATIONAHA.107.729939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes MR, Bacurau RFP, Simões HG et al (2012) Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals. J Hum Hypertens 26:533–539. doi:10.1038/jhh.2011.67

    Article  CAS  PubMed  Google Scholar 

  • Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med 30:79–87

    Article  CAS  PubMed  Google Scholar 

  • Neufer PD (1989) The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sports Med 8:302–320

    Article  CAS  PubMed  Google Scholar 

  • Parati G, Stergiou GS, Asmar R et al (2008) European Society of Hypertension guidelines for blood pressure monitoring at home : a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring on behalf of the ESH Working Group on Blood Pressure Monitoring. J Hypertens 26:1505–1530

    Article  CAS  PubMed  Google Scholar 

  • Pattyn N, Cornelissen VA, Eshghi SRT, Vanhees L (2013) The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med 43:121–133. doi:10.1007/s40279-012-0003-z

    Article  PubMed  Google Scholar 

  • Paul S, Churilla James MP (2012) Resistance training for hypertension. ACSM’s Heal Fit J 16:13–18

    Article  Google Scholar 

  • Piepoli M, Isea J, Pannarale G et al (1994) Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise. J Physiol 478:357–362. doi:10.1113/jphysiol.1994.sp020256

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollock ML, Franklin BA, Balady GJ et al (2000) Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Associatio. Circulation 101:828–833. doi:10.1161/01.CIR.101.7.828

    Article  CAS  PubMed  Google Scholar 

  • Rangul V, Bauman A, Holmen TL, Midthjell K (2012) Is physical activity maintenance from adolescence to young adulthood associated with reduced CVD risk factors, improved mental health and satisfaction with life: the HUNT Study, Norway. Int J Behav Nutr Phys Act 9:144–155. doi:10.1186/1479-5868-9-144

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS (2012) The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens 30:1277–1288. doi:10.1097/HJH.0b013e3283544669

    Article  CAS  PubMed  Google Scholar 

  • Rueda I, Banegas I, Prieto I et al (2016) Handedness and gender influence blood pressure in young healthy men and women: a pilot study 50:10–15. doi:10.1515/enr-2016-0003

    CAS  Google Scholar 

  • Seals DR, Desouza CA, Donato AJ, Tanaka H (2008) Physiology of the Aging Vasculature Habitual exercise and arterial aging. J Appl Physiol 105:1323–1332. doi:10.1152/japplphysiol.90553.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatelopoulos KS, Georgiopoulos G, Papaioannou T et al (2012) Can premenstrual syndrome affect arterial stiffness or blood pressure? Atherosclerosis 224:170–176. doi:10.1016/j.atherosclerosis.2012.05.037

    Article  CAS  PubMed  Google Scholar 

  • Strasser B, Schobersberger W (2011) Evidence for resistance training as a treatment therapy in obesity. J Obes. doi:10.1155/2011/482564

    PubMed  Google Scholar 

  • Tjønna AE, Stølen TO, Bye A et al (2009) Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci (Lond) 116:317–326. doi:10.1042/CS20080249

    Article  Google Scholar 

  • Torrance B, McGuire KA, Lewanczuk R, McGavock J (2007) Overweight, physical activity and high blood pressure in children: a review of the literature. Vasc Health Risk Manag 3:139–149

    PubMed  PubMed Central  Google Scholar 

  • Vagetti GC, Barbosa Filho VC, Moreira NB et al (2013) The prevalence and correlates of meeting the current physical activity for health guidelines in older people: a cross-sectional study in Brazilian women. Arch Gerontol Geriatr 56:492–500. doi:10.1016/j.archger.2012.12.003

    Article  PubMed  Google Scholar 

  • Westcott WL (2012) Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 11:209–216. doi:10.1249/JSR.0b013e31825dabb8

    Article  PubMed  Google Scholar 

  • Williams MA, Haskell WL, Ades PA et al (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116:572–584. doi:10.1161/CIRCULATIONAHA.107.185214

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Institut Nacional d’Educació Física de Catalunya (INEFC) for technical support and to the professors and students who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casimiro Javierre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niño, O., Balagué, N., Aragonés, D. et al. Different training programs decrease blood pressure during submaximal exercise. Eur J Appl Physiol 117, 2181–2189 (2017). https://doi.org/10.1007/s00421-017-3706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3706-x

Keywords

Navigation