Atrophy of calf muscles by unloading results in an increase of tissue sodium concentration and fat fraction decrease: a 23Na MRI physiology study

Abstract

Purpose

23Na MRI demonstrated increased tissue sodium concentrations in a number of pathologies. Acute atrophy results in muscle fibre volume shrinking that may result in a relative increase of extracellular volume and might affect sodium concentration. Thus, we hypothesized that local unloading of the calf muscles would lead to a decrease in muscle volume and an increase in muscle tissue sodium concentration.

Method

One lower leg of 12 healthy male subjects was submitted to a 60 day long period of unloading using the Hephaistos orthosis, while the other leg served as control. 23Na MRI and 2D PD-weighted Dixon turbo spin echo were obtained from the control and orthosis leg using a 3T scanner. For quantification, a sodium reference phantom was used with 10, 20, 30, and 40 mmol/L NaCl solution.

Result

Tissue sodium concentration (TSC) increased as an effect of unloading in the orthosis leg. Relative increases were 17.4 ± 16.8% (P = 0.005) in gastrocnemius medialis muscle, 11.1 ± 12.5 (P = 0.037) in gastrocnemius lateralis muscle, 16.2 ± 4.7% (P < 0.001) in soleus muscle, 10.0 ± 10.5% (P = 0.009) in the ventral muscle group, and 10.7 ± 10.0% (P = 0.003) in the central muscle group, respectively. TSC in the control leg did not significantly change. In the orthosis leg, muscle volume decreased as follows: medial gastrocnemius muscle: −5.4 ± 8.3% (P = 0.043) and soleus muscle: −7.8 ± 15.0% (P = 0.043).

Conclusion

Unloading atrophy is associated with an increase in muscle sodium concentration. 23Na MRI is capable of detecting these rather small changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

FoV:

Field of view (FoV)

LME:

Linear mixed effects

PD:

Proton density

ROI:

Regions of interest

SNR:

Signal-to-noise ratio

TSC:

Tissue sodium concentration

TSE:

Turbo spin echo

TA:

Acquisition time

TE:

Echo time

TR:

Repetition time

T2 :

Transversal relaxation time

References

  1. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64. doi:10.1111/j.1600-0838.2009.01084.x

    CAS  Article  PubMed  Google Scholar 

  2. Adams GR, Caiozzo VJ, Baldwin KM, (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95(6):2185–2201

    Article  PubMed  Google Scholar 

  3. Allis JL, Seymour A-ML, Radda GK (1991) Absolute quantification of intracellular Na+ using triple-quantum-filtered sodium-23 NMR. J Magn Reson (1969) 93:71–76. doi:10.1016/0022-2364(91)90032-o

    CAS  Article  Google Scholar 

  4. Bangerter NK, Tarbox GJ, Taylor MD, Kaggie JD (2016) Quantitative sodium magnetic resonance imaging of cartilage, muscle, and tendon. Quant Imaging Med Surg 6:699–714. doi:10.21037/qims.2016.12.10

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on 23Na MRI and relaxation characteristics of the human calf muscle. J Magn Reson Imaging 11:532–538. doi:10.1002/(sici)1522-2586(200005)11:5<532:aid-jmri9>3.0.co;2-#

  6. Berendsen HJC, Edzes HT (1973) The observation and general interpretation of sodium magnetic resonance in biological material. Ann N Y Acad Sci 204:459–485. doi:10.1111/j.1749-6632.1973.tb30799.x

    CAS  Article  PubMed  Google Scholar 

  7. Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR (1994) Quantitativein vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med 32:219–223. doi:10.1002/mrm.1910320210

    CAS  Article  PubMed  Google Scholar 

  8. Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 8:288–293. doi:10.1053/joca.1999.0303

    CAS  Article  Google Scholar 

  9. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19:781–821. doi:10.1002/nbm.1102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chang G, Wang L, Schweitzer ME, Regatte RR (2010) 3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience. Eur Radiol 20:2039–2046. doi:10.1007/s00330-010-1761-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216:559–568. doi:10.1148/radiology.216.2.r00jl46559

    CAS  Article  PubMed  Google Scholar 

  12. Dahlmann A et al (2015) Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 87:434–441. doi:10.1038/ki.2014.269

    CAS  Article  PubMed  Google Scholar 

  13. Desplanches D, Hoppeler H, Mayet MH, Denis C, Claassen H, Ferretti G (1998) Effects of bedrest on deltoideus muscle morphology and enzymes. Acta Physiol Scand 162:135–140. doi:10.1046/j.1365-201X.1998.0288f.x

    CAS  Article  PubMed  Google Scholar 

  14. Drummer C, Hesse C, Baisch F, Norsk P, Elmann-Larsen B, Gerzer R, Heer M (2000) Water and sodium balances and their relation to body mass changes in microgravity. Eur J Clin Investig 30:1066–1075. doi:10.1046/j.1365-2362.2000.00766.x

    CAS  Article  Google Scholar 

  15. Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM (2014) Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol 24:1366–1375. doi:10.1007/s00330-014-3121-1

    Article  PubMed  Google Scholar 

  16. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89:104–110

    CAS  PubMed  Google Scholar 

  17. Hudlicka O (1985) Development and adaptability of microvasculature in skeletal muscle. J Exp Biol 115:215–228

    CAS  PubMed  Google Scholar 

  18. Inglese M et al (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain: J Neurol 133:847–857. doi:10.1093/brain/awp334

    CAS  Article  Google Scholar 

  19. Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magma 27:5–19. doi:10.1007/s10334-013-0394-3

    CAS  Article  PubMed  Google Scholar 

  20. Kopp C et al (2012) (23)Na magnetic resonance imaging of tissue sodium. Hypertension 59:167–172. doi:10.1161/HYPERTENSIONAHA.111.183517

    CAS  Article  PubMed  Google Scholar 

  21. Kopp C et al (2013) 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61:635–640. doi:10.1161/HYPERTENSIONAHA.111.00566

    CAS  Article  PubMed  Google Scholar 

  22. LeBlanc A et al (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164

    CAS  PubMed  Google Scholar 

  23. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63:1583–1593. doi:10.1002/mrm.22381

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maarouf A et al (2014) Topography of brain sodium accumulation in progressive multiple sclerosis. Magma 27:53–62. doi:10.1007/s10334-013-0396-1

    CAS  Article  PubMed  Google Scholar 

  25. Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging: JMRI 38:511–529. doi:10.1002/jmri.24168

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573. doi:10.1002/mrm.22157

    Article  PubMed  Google Scholar 

  27. Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Investig Radiol 46:759–766. doi:10.1097/RLI.0b013e31822836f6

    CAS  Article  Google Scholar 

  28. Narici MV, de Boer MD (2011) Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol 111:403–420. doi:10.1007/s00421-010-1556-x

    CAS  Article  PubMed  Google Scholar 

  29. Ooms KJ, Cannella M, Vega AJ, Marcolongo M, Polenova T (2008) 23Na TQF NMR imaging for the study of spinal disc tissue. J Magn Reson 195:112–115. doi:10.1016/j.jmr.2008.07.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227:529–537. doi:10.1148/radiol.2272020483

    Article  PubMed  Google Scholar 

  31. Paling D et al (2013) Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain: J Neurol 136:2305–2317. doi:10.1093/brain/awt149

    Article  Google Scholar 

  32. Ra JB, Hilal SK, Cho ZH (1986) A method forin vivo MR imaging of the shortT2 component of sodium-23. Magn Reson Med 3:296–302. doi:10.1002/mrm.1910030213

    CAS  Article  PubMed  Google Scholar 

  33. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029. doi:10.1016/j.bone.2004.11.014

    Article  PubMed  Google Scholar 

  34. Rittweger J, Moller K, Bareille MP, Felsenberg D, Zange J (2013) Muscle X-ray attenuation is not decreased during experimental bed rest. Muscle Nerve 47:722–730. doi:10.1002/mus.23644

    Article  PubMed  Google Scholar 

  35. Rooney WD, Springer CS (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4:209–226. doi:10.1002/nbm.1940040502

    CAS  Article  PubMed  Google Scholar 

  36. Roubenoff R (2000) Sarcopenia and its implications for the elderly. Eur J Clin Nutr 54:S40–S47. doi:10.1038/sj.ejcn.1601024

    Article  PubMed  Google Scholar 

  37. Sangwan S, Green RA, Taylor NF (2014) Characteristics of Stabilizer Muscles: a Systematic Review. Physiother Can 66(4):348–358

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shinar H, Navon G (1986) Sodium-23 NMR relaxation times in body fluids. Magn Reson Med 3:927–934. doi:10.1002/mrm.1910030613

    CAS  Article  PubMed  Google Scholar 

  39. Titze J et al (2003) Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol 285:F1108–F1117. doi:10.1152/ajprenal.00200.2003

    CAS  Article  PubMed  Google Scholar 

  40. Weber MA, Nagel AM, Wolf MB, Jurkat-Rott K, Kauczor HU, Semmler W, Lehmann-Horn F (2012) Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 259:2385–2392. doi:10.1007/s00415-012-6512-8

    Article  PubMed  Google Scholar 

  41. Weber T, Ducos M, Mulder E, Herrera F, Bruggemann GP, Bloch W, J W (2013) The specific role of gravitational accelerations for arterial adaptations. J Appl Physiol (1985) 114:387–393. doi:10.1152/japplphysiol.01117.2012

    Article  Google Scholar 

  42. Zange J et al (2017) Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial. PLoS One 12:e0171562. doi:10.1371/journal.pone.0171562

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K. Schopen received a Helmholtz Space Life Sciences Research School (SpaceLife) Ph.D. scholarship. SpaceLife was funded in equal parts by the Helmholtz Association (Grant No.: VH-KO-300) and the German Aerospace Center (DLR). The NutriHEP study was funded by the DLR internal cost object 2475 101.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Gerlach.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerlach, D.A., Schopen, K., Linz, P. et al. Atrophy of calf muscles by unloading results in an increase of tissue sodium concentration and fat fraction decrease: a 23Na MRI physiology study. Eur J Appl Physiol 117, 1585–1595 (2017). https://doi.org/10.1007/s00421-017-3647-4

Download citation

Keywords

  • Sodium
  • MRI
  • 23Na MRI
  • Tissue sodium concentration (TSC)
  • Quantification
  • Muscle unloading