Skip to main content
Log in

Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The effectiveness of exercise to lower blood pressure may depend on the type and intensity of exercise. We study the short-term (i.e., 14-h) effects of a bout of high-intensity aerobic interval training (HIIT) on blood pressure in metabolic syndrome (MetS) patients.

Methods

Nineteen MetS patients (55.2 ± 7.3 years, 6 women) entered the study. Eight of them were normotensive and eleven hypertensive according to MetS threshold (≥130 mmHg for SBP and/or ≥85 mmHg for DBP). In the morning of 3 separated days, they underwent a cycling exercise bout of HIIT (>90% of maximal heart rate, ~85% VO2max), or a bout of isocaloric moderate-intensity continuous training (MICT; ~70% of maximal heart rate, ~60% VO2max), or a control no-exercise trial (REST). After exercise, ambulatory blood pressure (ABP; 14 h) was monitored, while subjects continued their habitual daily activities wearing a wrist-band activity monitor.

Results

No ABP differences were found for normotensive subjects. In hypertensive subjects, systolic ABP was reduced by 6.1 ± 2.2 mmHg after HIIT compared to MICT and REST (130.8 ± 3.9 vs. 137.4 ± 5.1 and 136.4 ± 3.8 mmHg, respectively; p < 0.05). However, diastolic ABP was similar in all three trials (77.2 ± 2.6 vs. 78.0 ± 2.6 and 78.9 ± 2.8 mmHg, respectively). Motion analysis revealed no differences among trials during the 14-h.

Conclusion

This study suggests that the blood pressure reducing effect of a bout of exercise is influence by the intensity of exercise. A HIIT exercise bout is superior to an equivalent bout of continuous exercise when used as a non-pharmacological aid in the treatment of hypertension in MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABP:

Ambulatory blood pressure (systolic and diastolic)

BMI:

Body mass index

DBP:

Diastolic blood pressure

GXT:

Graded exercise testing

HIIT:

High-intensity interval training

HSD:

Honest significant difference

MICT:

Moderate-intensity continuous training

MetS:

Metabolic syndrome

PEH:

Post-exercise hypotension

SBP:

Systolic blood pressure

VO2max :

Maximal oxygen consumption

References

  • Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr, International Diabetes Federation Task Force on Epedemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Foundation; International Atherosclerosis Society; International Association for the Study of Obesity (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  • Angadi SS, Bhammar DM, Gaesser GA (2015) Postexercise hypotension after continuous, aerobic interval, and sprint interval exercise. J Strength Cond Res 29(10):2888–2893. doi:10.1519/JSC.0000000000000939

    Article  PubMed  Google Scholar 

  • Angeli F, Reboldi G, Verdecchia P (2014) Hypertension, inflammation and atrial fibrillation. J Hypertens 32(3):480–483. doi:10.1097/HJH.0000000000000112

    Article  CAS  PubMed  Google Scholar 

  • Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, Gheeraert PJ, Missault LH, Braun JJ, Six RO, Van Der Niepen P, O’Brien E, Office versus Ambulatory Pressure Study Investigators (2003) Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med 348(24):2407–2415. doi:10.1056/NEJMoa022273

    Article  PubMed  Google Scholar 

  • Coats AJ, Conway J, Isea JE, Pannarale G, Sleight P, Somers VK (1989) Systemic and forearm vascular resistance changes after upright bicycle exercise in man. J Physiol 413:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen VA, Fagard RH (2005) Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46(4):667–675. doi:10.1161/01.HYP.0000184225.05629.51

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen VA, Arnout J, Holvoet P, Fagard RH (2009) Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J Hypertens 27(4):753–762. doi:10.1097/HJH.0b013e328322cf60

    Article  CAS  PubMed  Google Scholar 

  • DeVallance E, Fournier SB, Donley DA, Bonner DE, Lee K, Frisbee JC, Chantler PD (2015) Is obesity predictive of cardiovascular dysfunction independent of cardiovascular risk factors? Int J Obes (Lond) 39(2):244–253. doi:10.1038/ijo.2014.111

    Article  CAS  Google Scholar 

  • Dimeo F, Pagonas N, Seibert F, Arndt R, Zidek W, Westhoff TH (2012) Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension 60(3):653–658. doi:10.1161/HYPERTENSIONAHA.112.197780

    Article  CAS  PubMed  Google Scholar 

  • Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, Frisbee JC, Chantler PD (2014) Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol 116(11):1396–1404. doi:10.1152/japplphysiol.00151.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescatello LS (2010) The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J 160(3):513–520. doi:10.1016/j.ahj.2010.06.005

    Article  PubMed  Google Scholar 

  • Giles TD (2006) Circadian rhythm of blood pressure and the relation to cardiovascular events. J Hypertens Suppl 24(2):S11–S16. doi:10.1097/01.hjh.0000220098.12154.88

    Article  CAS  PubMed  Google Scholar 

  • Goodwin J, Bilous M, Winship S, Finn P, Jones SC (2007) Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit 12(2):113–117. doi:10.1097/MBP.0b013e3280acab1b

    Article  PubMed  Google Scholar 

  • Halliwill JR, Buck TM, Lacewell AN, Romero SA (2013) Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol 98(1):7–18. doi:10.1113/expphysiol.2011.058065

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojon A, Fernandez JR (2011) Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol 58(11):1165–1173. doi:10.1016/j.jacc.2011.04.043

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Pritchard C, George K, Edwards B, Atkinson G (2008) The acute post-exercise response of blood pressure varies with time of day. Eur J Appl Physiol 104(3):481–489. doi:10.1007/s00421-008-0797-4

    Article  PubMed  Google Scholar 

  • Keese F, Farinatti P, Pescatello L, Cunha FA, Monteiro WD (2012) Aerobic exercise intensity influences hypotension following concurrent exercise sessions. Int J Sports Med 33(2):148–153. doi:10.1055/s-0031-1291321

    Article  CAS  PubMed  Google Scholar 

  • Kriemler S, Hebestreit H, Mikami S, Bar-Or T, Ayub BV, Bar-Or O (1999) Impact of a single exercise bout on energy expenditure and spontaneous physical activity of obese boys. Pediatr Res 46(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Lynn BM, Minson CT, Halliwill JR (2009) Fluid replacement and heat stress during exercise alter post-exercise cardiac haemodynamics in endurance exercise-trained men. J Physiol 587(Pt 14):3605–3617. doi:10.1113/jphysiol.2009.171199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald JR (2002) Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens 16(4):225–236. doi:10.1038/sj.jhh.1001377

    Article  CAS  PubMed  Google Scholar 

  • MacDonald J, MacDougall J, Hogben C (1999) The effects of exercise intensity on post exercise hypotension. J Hum Hypertens 13(8):527–531

    Article  CAS  PubMed  Google Scholar 

  • MacInnis MJ, Gibala MJ (2016) Physiological adaptations to interval training and the role of exercise intensity. J Physiol. doi:10.1113/JP273196

    Article  Google Scholar 

  • Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, Wisloff U, Ingul CB, Stoylen A (2012) Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol 19(2):151–160. doi:10.1177/1741826711400512

    Article  PubMed  Google Scholar 

  • Morales-Palomo F, Ramirez-Jimenez M, Ortega JF, Pallares JG, Mora-Rodriguez R (2016) Cardiovascular drift during training for fitness in metabolic syndrome patients. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000001139

    Article  Google Scholar 

  • Morales-Palomo F, Ramirez-Jimenez M, Ortega JF, Pallarés JG, Mora-Rodriguez R (2017) Acute hypotension after high-intensity interval exercise in metabolic syndrome patients. Int J Sports Med. doi:10.1055/s-0043-101911

    Article  PubMed  Google Scholar 

  • Mora-Rodriguez R, Ortega JF, Hamouti N, Fernandez-Elias VE, Canete Garcia-Prieto J, Guadalupe-Grau A, Saborido A, Martin-Garcia M, Guio de Prada V, Ara I, Martinez-Vizcaino V (2014) Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutr Metab Cardiovasc Dis 24(7):792–798. doi:10.1016/j.numecd.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  • Padilla J, Wallace JP, Park S (2005) Accumulation of physical activity reduces blood pressure in pre- and hypertension. Med Sci Sports Exerc 37(8):1264–1275

    Article  PubMed  Google Scholar 

  • Pescatello LS, Fargo AE, Leach CN Jr, Scherzer HH (1991) Short-term effect of dynamic exercise on arterial blood pressure. Circulation 83(5):1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, American College of Sports Medicine (2004a) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553

    Article  PubMed  Google Scholar 

  • Pescatello LS, Guidry MA, Blanchard BE, Kerr A, Taylor AL, Johnson AN, Maresh CM, Rodriguez N, Thompson PD (2004b) Exercise intensity alters postexercise hypotension. J Hypertens 22(10):1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Pescatello LS, Blanchard BE, Van Heest JL, Maresh CM, Gordish-Dressman H, Thompson PD (2008) The metabolic syndrome and the immediate antihypertensive effects of aerobic exercise: a randomized control design. BMC Cardiovasc Disord 8:12. doi:10.1186/1471-2261-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Piepoli M, Isea JE, Pannarale G, Adamopoulos S, Sleight P, Coats AJ (1994) Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man. J Physiol 478(Pt 2):357–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692. doi:10.1007/s40279-015-0321-z

    Article  PubMed  Google Scholar 

  • Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA (2016) Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol 121(1):279–288. doi:10.1152/japplphysiol.00024.2016

    Article  PubMed  Google Scholar 

  • Scuteri A, Laurent S, Cucca F, Cockcroft J, Cunha PG, Manas LR, Mattace Raso FU, Muiesan ML, Ryliskyte L, Rietzschel E, Strait J, Vlachopoulos C, Volzke H, Lakatta EG, Nilsson PM, Metabolic Syndrome and Arteries Research Consortium (2015) Metabolic syndrome across Europe: different clusters of risk factors. Eur J Prev Cardiol 22(4):486–491. doi:10.1177/2047487314525529

    Article  PubMed  Google Scholar 

  • Seals DR, Hagberg JM (1984) The effect of exercise training on human hypertension: a review. Med Sci Sports Exerc 16(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Ma H, Xiang MX, Wang JA (2013) Meta-analysis of cohort studies of baseline prehypertension and risk of coronary heart disease. Am J Cardiol 112(2):266–271. doi:10.1016/j.amjcard.2013.03.023

    Article  PubMed  Google Scholar 

  • Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH (1978) Weight and blood pressure. Findings in hypertension screening of 1 million Americans. JAMA 240(15):1607–1610

    Article  CAS  PubMed  Google Scholar 

  • Stensvold D, Tjonna AE, Skaug EA, Aspenes S, Stolen T, Wisloff U, Slordahl SA (2010) Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol 108(4):804–810

    Article  PubMed  Google Scholar 

  • Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA, Kemi OJ, Najjar SM, Wisloff U (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118(4):346–354. doi:10.1161/circulationaha.108.772822

    Article  PubMed  PubMed Central  Google Scholar 

  • Tjonna AE, Rognmo O, Bye A, Stolen TO, Wisloff U (2011) Time course of endothelial adaptation after acute and chronic exercise in patients with metabolic syndrome. J Strength Cond Res 25(9):2552–2558. doi:10.1519/JSC.0b013e3181fb4809

    Article  PubMed  Google Scholar 

  • Weston KS, Wisloff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–1234. doi:10.1136/bjsports-2013-092576

    Article  PubMed  Google Scholar 

  • Wilkins BW, Minson CT, Halliwill JR (2004) Regional hemodynamics during postexercise hypotension. II. Cutaneous circulation. J Appl Physiol 97(6):2071–2076. doi:10.1152/japplphysiol.00466.2004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by a Grant from the Spanish Ministry of Economy and Competivity (DEP-2014-52930-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Mora-Rodriguez.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Carsten Lundby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Jimenez, M., Morales-Palomo, F., Pallares, J.G. et al. Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients. Eur J Appl Physiol 117, 1403–1411 (2017). https://doi.org/10.1007/s00421-017-3631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3631-z

Keywords

Navigation