Skip to main content

Advertisement

Log in

The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

High volumes of aerobic exercise have been associated with reduced testosterone (T), known as the exercise-hypogonadal male condition (EHMC). Although the presence of low T has been identified, few studies have assessed the presence of androgen-deficient symptoms. The purpose of this investigation is to assess men exhibiting EHMC and evaluate their hypothalamic–pituitary–gonadal axis, the presence of hypogonadal symptoms, and also investigate a possible contribution of inadequate nutrition to the condition.

Methods

A cross-sectional design compared 9 long-distance runners exhibiting EHMC to 8 non-active controls. Comparisons included serum T, luteinizing hormone (LH), follicle-stimulating hormone, and cortisol, the Aging Male Symptoms (AMS) questionnaire score, bone mineral density (BMD), and a food frequency questionnaire.

Results

Mean T was significantly reduced in the EHMC group (EHMC 9.2 nmol L−1 vs. CONT 16.2 nmol L−1). The EHMC group demonstrated significantly higher AMS scores (EHMC 27.1 ± 7.3 vs. CONT 19.7 ± 2.5). There were no differences in bone density, although 3 cases of osteopenia were noted for EHMC in the lumbar spine, 1 in the right femur, and 1 in the radius. Energy availability was significantly reduced in EHMC (EHMC 27.2 ± 12.7 vs. CONT 45.4 ± 18.2 kcal d FFM−1).

Conclusions

Men exhibiting EHMC do appear to present with symptoms associated with androgen deficiency. For the most part, these symptoms are limited to those reported on the AMS questionnaire, although there are also some cases of clinically low BMD. It is possible that inadequate energy intake is contributing to this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

T:

Testosterone

LH:

Luteinizing hormone

FSH:

Follicle-stimulating hormone

C:

Cortisol

WADA:

World Anti-Doping Agency

RED-S:

Relative energy deficiency in sport

EHMC:

Exercise-hypogonadal male condition

CONT:

Control

USG:

Urine specific gravity

DEXA:

Dual-energy X-ray absorptiometry

FFQ:

Food frequency questionnaire

AMS:

Aging male symptom questionnaire

EA:

Energy availability

ELISA:

Enzyme-linked immunosorbent assay

References

  • Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80

    Article  CAS  PubMed  Google Scholar 

  • Alemany JA, Nindl BC, Kellogg MD, Tharion WJ, Young AJ, Montain SJ (2008) Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J Appl Physiol (1985) 105:58–64. doi:10.1152/japplphysiol.00005.2008

    Article  CAS  Google Scholar 

  • Arver S, Lehtihet M (2009) Current guidelines for the diagnosis of testosterone deficiency. Front Horm Res 37:5–20. doi:10.1159/000175839 (175839 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Ayers JW, Komesu Y, Romani T, Ansbacher R (1985) Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril 43:917–921

    Article  CAS  PubMed  Google Scholar 

  • Bennell KL, Brukner PD, Malcolm SA (1996) Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes. Br J Sports Med 30:205–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2006) Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 91:1995–2010. doi:10.1210/jc.2005-2847

    Article  CAS  PubMed  Google Scholar 

  • Bhasin S et al (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95:2536–2559. doi:10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  • Burge MR, Lanzi RA, Skarda ST, Eaton RP (1997) Idiopathic hypogonadotropic hypogonadism in a male runner is reversed by clomiphene citrate. Fertil Steril 67:783–785

    Article  CAS  PubMed  Google Scholar 

  • Cialdella-Kam L, Guebels CP, Maddalozzo GF, Manore MM (2014) Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients 6:3018–3039. doi:10.3390/nu6083018

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cumming DC, Quigley ME, Yen SS (1983) Acute suppression of circulating testosterone levels by cortisol in men. J Clin Endocrinol Metab 57:671–673. doi:10.1210/jcem-57-3-671

    Article  CAS  PubMed  Google Scholar 

  • De Souza MJ et al (2014) Misunderstanding the female athlete triad: refuting the IOC consensus statement on relative energy deficiency in sport (RED-S). Br J Sports Med 48:1461–1465. doi:10.1136/bjsports-2014-093958

    Article  PubMed  Google Scholar 

  • Hackney AC (2008) Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest 31:932–938 (5022 [pii])

  • Hackney AC, Sinning WE, Bruot BC (1988) Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 20:60–65

    Article  CAS  PubMed  Google Scholar 

  • Hackney AC, Sharp RL, Runyan WS, Ness RJ (1989) Relationship of resting prolactin and testosterone in males during intensive training. Br J Sports Med 23:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackney AC, Sinning WE, Bruot BC (1990) Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med 11:298–303. doi:10.1055/s-2007-1024811

    Article  CAS  PubMed  Google Scholar 

  • Hackney AC, Fahrner CL, Stupnicki R (1997) Reproductive hormonal responses to maximal exercise in endurance-trained men with low resting testosterone levels. Exp Clin Endocrinol Diabetes 105:291–295. doi:10.1055/s-0029-1211767

    Article  CAS  PubMed  Google Scholar 

  • Hackney AC, Fahrner CL, Gulledge TP (1998) Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness 38:138–141

    CAS  PubMed  Google Scholar 

  • Hackney AC, Moore AW, Brownlee KK (2005) Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung 92:121–137. doi:10.1556/APhysiol.92.2005.2.3

    Article  CAS  PubMed  Google Scholar 

  • Heinemann LA et al (2003) The aging males’ symptoms (AMS) scale: update and compilation of international versions. Health Qual Life Outcomes 1:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper DR et al (2014) Evidence of exercise-induced hypogonadism at the 2011 Ironman World Championships. J Strength Cond Res 28:51

    Google Scholar 

  • Kraemer WJ et al (2008) Hormonal responses to a 160-km race across frozen Alaska. Br J Sports Med 42:116–120. doi:10.1136/bjsm.2007.035535 (bjsm.2007.035535 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Kupchak BR, Kraemer WJ, Hoffman MD, Phinney SD, Volek JS (2014) The impact of an ultramarathon on hormonal and biochemical parameters in men. Wilderness Environ Med 25:278–288. doi:10.1016/j.wem.2014.03.013

    Article  PubMed  Google Scholar 

  • Loucks AB, Verdun M, Heath EM (1998) Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985) 84:37–46

    CAS  Google Scholar 

  • MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 315:411–417. doi:10.1056/NEJM198608143150702

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD et al (1992) Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol (1985) 73:1165–1170

    CAS  Google Scholar 

  • McColl EM, Wheeler GD, Gomes P, Bhambhani Y, Cumming DC (1989) The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol (Oxf) 31:617–621

    Article  CAS  Google Scholar 

  • Mountjoy M et al (2014) The IOC consensus statement: beyond the female athlete triad-relative energy deficiency in sport (RED-S). Br J Sports Med 48:491–497. doi:10.1136/bjsports-2014-093502

    Article  PubMed  Google Scholar 

  • Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP (2007) American college of sports medicine position stand. The female athlete triad. Med Sci Sports Exerc 39:1867–1882. doi:10.1249/mss.0b013e318149f111

    Article  PubMed  Google Scholar 

  • Reame N, Sauder SE, Kelch RP, Marshall JC (1984) Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab 59:328–337. doi:10.1210/jcem-59-2-328

    Article  CAS  PubMed  Google Scholar 

  • Santtila M, Kyrolainen H, Hakkinen K (2009) Serum hormones in soldiers after basic training: effect of added strength or endurance regimens. Aviat Space Environ Med 80:615–620

    Article  CAS  PubMed  Google Scholar 

  • von Eckardstein A, Kliesch S, Nieschlag E, Chirazi A, Assmann G, Behre HM (1997) Suppression of endogenous testosterone in young men increases serum levels of high density lipoprotein subclass lipoprotein A-I and lipoprotein(a). J Clin Endocrinol Metab 82:3367–3372. doi:10.1210/jcem.82.10.4267

    Google Scholar 

  • Warren MP (1980) The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab 51:1150–1157. doi:10.1210/jcem-51-5-1150

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GD, Wall SR, Belcastro AN, Cumming DC (1984) Reduced serum testosterone and prolactin levels in male distance runners. JAMA 252:514–516

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GD, Singh M, Pierce WD, Epling WF, Cumming DC (1991) Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab 72:422–425. doi:10.1210/jcem-72-2-422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study participants for their time and efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Kraemer.

Ethics declarations

Conflict of interest

The authors have nothing disclose.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooper, D.R., Kraemer, W.J., Saenz, C. et al. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol 117, 1349–1357 (2017). https://doi.org/10.1007/s00421-017-3623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3623-z

Keywords

Navigation