European Journal of Applied Physiology

, Volume 117, Issue 7, pp 1309–1315 | Cite as

Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles

  • Tom Bouvier
  • Jules Opplert
  • Carole Cometti
  • Nicolas BabaultEmail author
Original Article



This study aimed to determine the acute effects of static stretching on stiffness indexes of two muscle groups with a contrasting difference in muscle–tendon proportion.


Eleven active males were tested on an isokinetic dynamometer during four sessions randomly presented. Two sessions were dedicated to quadriceps and the two others to triceps surae muscles. Before and immediately after the stretching procedure (5 × 30 s), gastrocnemius medialis and rectus femoris fascicle length and myotendinous junction elongation were determined using ultrasonography. Passive and maximal voluntary torques were measured. Fascicle and myotendinous junction stiffness indexes were calculated.


After stretching, maximal voluntary torque similarly decreased for both muscle groups. Passive torque significantly decreased on triceps surae and remained unchanged on quadriceps muscles. Fascicle length increased similarly for both muscles. However, myotendinous junction elongation remained unchanged for gastrocnemius medialis and increased significantly for rectus femoris muscle. Fascicle stiffness index significantly decreased on medial gastrocnemius and remained unchanged on rectus femoris muscle. In contrast, myotendinous junction stiffness index similarly decreased on both muscles.


Depending on the muscle considered, the present results revealed different acute stretching effects. This muscle dependency appeared to affect primarily fascicle stiffness index rather than the myotendinous junction.


Fascicle Myotendinous junction Stiffness Gastrocnemius medialis Rectus femoris 



Analysis of variances


Gastrocnemius medialis


Fascicle elongation


Fascicle length at rest


Myotendinous junction


Maximal Voluntary contraction


Partial eta square


Rectus femoris


Range of motion


Passive torque changes



Researchers involved in collecting data in this study have no financial or personal interest in the outcome of results.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Abellaneda S, Guissard N, Duchateau J (2009) The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol 106:169–177. doi: 10.1152/japplphysiol.90577.2008 CrossRefPubMedGoogle Scholar
  2. Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279. doi: 10.1007/s10439-009-9852-5 CrossRefPubMedGoogle Scholar
  3. Babault N, Kouassi BYL, Desbrosses K (2010) Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J Sci Med Sport 13:247–252. doi: 10.1016/j.jsams.2008.12.633 CrossRefPubMedGoogle Scholar
  4. Babault N, Bazine W, Deley G et al (2015) Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level. Int J Sports Physiol Perform 10:117–119. doi: 10.1123/ijspp.2013-0555 CrossRefPubMedGoogle Scholar
  5. Blazevich AJ, Gill ND, Bronks R, Newton RU (2003) Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc 35:2013–2022. doi: 10.1249/01.MSS.0000099092.83611.20 CrossRefPubMedGoogle Scholar
  6. Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209:289–310. doi: 10.1111/j.1469-7580.2006.00619.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bojsen-Møller J, Hansen P, Aagaard P et al (2003) Measuring mechanical properties of the vastus lateralis tendon-aponeurosis complex in vivo by ultrasound imaging. Scand J Med Sci Sports 13:259–265CrossRefPubMedGoogle Scholar
  8. Cannavan D, Coleman DR, Blazevich AJ (2012) Lack of effect of moderate-duration static stretching on plantar flexor force production and series compliance. Clin Biomech (Bristol, Avon) 27:306–312. doi: 10.1016/j.clinbiomech.2011.10.003 CrossRefGoogle Scholar
  9. Cè E, Longo S, Rampichini S et al (2015) Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. J Electromyogr Kinesiol 25:469–478. doi: 10.1016/j.jelekin.2015.03.001 CrossRefPubMedGoogle Scholar
  10. Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge Academic, New YorkGoogle Scholar
  11. Cramer JT, Housh TJ, Johnson GO et al (2004) Acute effects of static stretching on peak torque in women. J Strength Cond Res 18:236–241. doi: 10.1519/R-13303.1 PubMedGoogle Scholar
  12. Csapo R, Maganaris CN, Seynnes OR, Narici MV (2010) On muscle, tendon and high heels. J Exp Biol 213:2582–2588. doi: 10.1242/jeb.044271 CrossRefPubMedGoogle Scholar
  13. Dallas G, Smirniotou A, Tsiganos G et al (2014) Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts. J Sports Med Phys Fitness 54:683–690PubMedGoogle Scholar
  14. Freitas SR, Andrade RJ, Larcoupaille L et al (2015) Muscle and joint responses during and after static stretching performed at different intensities. Eur J Appl Physiol. doi: 10.1007/s00421-015-3104-1 PubMedGoogle Scholar
  15. Guissard N, Duchateau J, Hainaut K (2001) Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res 137:163–169CrossRefPubMedGoogle Scholar
  16. Herda TJ, Herda ND, Costa PB et al (2013) The effects of dynamic stretching on the passive properties of the muscle–tendon unit. J Sports Sci 31:479–487. doi: 10.1080/02640414.2012.736632 CrossRefPubMedGoogle Scholar
  17. Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N (2016) Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol 116:911–918. doi: 10.1007/s00421-016-3349-3 CrossRefPubMedGoogle Scholar
  18. Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223CrossRefPubMedGoogle Scholar
  19. Kay A, Blazevich A (2009a) Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol 107:1181–1189. doi: 10.1152/japplphysiol.00281.2009 CrossRefPubMedGoogle Scholar
  20. Kay ADA, Blazevich AJA (2009b) Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 106:1249–1256. doi: 10.1152/japplphysiol.91476.2008 CrossRefPubMedGoogle Scholar
  21. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 90:520–527PubMedGoogle Scholar
  22. Lieber RL, Brown CG, Trestik CL (1992) Model of muscle–tendon interaction during frog semitendinosis fixed-end contractions. J Biomech 25:421–428CrossRefPubMedGoogle Scholar
  23. Magnusson SP (1998) Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sport 8:65–77CrossRefGoogle Scholar
  24. McHugh MP, Tallent J, Johnson CD (2013) The role of neural tension in stretch-induced strength loss. J Strength Cond Res 27:1327–1332. doi: 10.1519/JSC.0b013e31828a1e73 CrossRefPubMedGoogle Scholar
  25. Mizuno T, Matsumoto M, Umemura Y (2013) Decrements in stiffness are restored within 10 min. Int J Sports Med 34:484–490. doi: 10.1055/s-0032-1327655 PubMedGoogle Scholar
  26. Morse CI, Degens H, Seynnes OR et al (2008) The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol 586:97–106. doi: 10.1113/jphysiol.2007.140434 CrossRefPubMedGoogle Scholar
  27. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N (2011) Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res 29:1759–1763. doi: 10.1002/jor.21445 CrossRefPubMedGoogle Scholar
  28. Opplert J, Genty J-B, Babault N (2016) Do stretch durations affect muscle mechanical and neurophysiological properties? Int J Sports Med 37:673–679. doi: 10.1055/s-0042-104934 CrossRefPubMedGoogle Scholar
  29. Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89:675–689. doi: 10.1113/expphysiol.2004.027797 CrossRefPubMedGoogle Scholar
  30. Ryan ED, Herda TJ, Costa PB et al (2009) Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J Sports Sci 27:957–961. doi: 10.1080/02640410902998254 CrossRefPubMedGoogle Scholar
  31. Whitehead NP, Weerakkody NS, Gregory JE et al (2001) Changes in passive tension of muscle in humans and animals after eccentric exercise. J Physiol 533:593–604. doi: 10.1111/j.1469-7793.2001.0593a.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Winter SL, Challis JH (2010) The force–length curves of the human rectus femoris and gastrocnemius muscles in vivo. J Appl Biomech 26:45–51. doi: 10.1123/jab.26.1.45 CrossRefPubMedGoogle Scholar
  33. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Institute for Health and Medical Research (INSERM), Unit 1093, Cognition, Action and Sensorimotor PlasticityDijon CedexFrance
  2. 2.Centre for Performance and Expertise, Sport Science FacultyUniversité de BourgogneDijon CedexFrance

Personalised recommendations