Skip to main content
Log in

Middle cerebral artery blood flow velocity during a 4 km cycling time trial

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study sought to describe middle cerebral artery blood flow velocity (MCAv) during a 4 km cycling time trial, and relate it to different pacing strategies adopted by participants.

Methods

After familiarisation and a standardised exercise protocol, 15 male trained cyclists rode a 4 km time trial on a cycling ergometer. MCAv was assessed via transcranial Doppler ultrasound in the right hemisphere at resting baseline, and throughout the time trial. Mean arterial pressure, end-tidal partial pressure of carbon dioxide (PetCO2) and heart rate were assessed alongside MCAv. Plasma lactate was assessed post time trial. Data were compared depending upon whether participants completed the time trial with a positive (first half faster than the last) or negative pacing profile although there was no difference in the time to completion with either pacing strategy (positive 344 ± 23 s, negative 334 ± 14 s; p = 0.394).

Results

Lower mean MCAv (positive pacing −7.6 ± 14.2%, negative pacing +21.2 ± 15.0% compared to resting baseline measures; p = 0.004) and lower PetCO2 (significant interaction p < 0.001) towards the end of the time trial were observed with positive compared to negative pacing. Heart rate and lactate did not differ between pacing strategies.

Conclusions

Changes in MCAv appear to depend on the pacing strategy adopted, with a positive pacing strategy likely to contribute to a hyperventilatory drop in PetCO2 and subsequent reduction in MCAv. Although lower cerebral blood flow cannot be directly linked to an inability to raise or maintain power output during the closing stages of the time trial, this potential contributor to fatigue is worth further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CBF:

Cerebral blood flow

CO2 :

Carbon dioxide

HREC:

Human Research Ethics Committee

MAP:

Mean arterial pressure

MCA:

Middle cerebral artery

MCAv :

Middle cerebral artery blood flow velocity

PetCO2 :

Partial pressure of end-tidal carbon dioxide

PaCO2 :

Partial pressure of arterial carbon dioxide

RCT:

Randomised controlled trial

RPM:

Revolutions per minute

SD:

Standard deviation

TCD:

Transcranial doppler ultrasound

TT:

Time trial

References

  • Abbiss CR, Laursen PB (2008) Describing and understanding pacing strategies during athletic competition. Sports Med 38(3):239–252

    Article  PubMed  Google Scholar 

  • Afifi A, Bergman R (1998) Functional neuroanatomy, 2nd edn. MacGrawHill, New York

    Google Scholar 

  • Ainslie PN, Hoiland RL (2014) Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol 117(10):1081–1083. doi:10.1152/japplphysiol.00854.2014

    Article  PubMed  Google Scholar 

  • Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575(3):937–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhambhani Y, Malik R, Mookerjee S (2007) Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol 156(2):196–202

    Article  PubMed  Google Scholar 

  • Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117(10):1090–1096

    Article  PubMed  Google Scholar 

  • Hartley GL, Watson CL, Ainslie PN, Tokuno CD, Greenway MJ, Gabriel DA, O’Leary DD, Cheung SS (2016) Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow. J Physiol [Ahead of print]

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2):183–238

    CAS  PubMed  Google Scholar 

  • Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55(3):698–705

    Article  CAS  PubMed  Google Scholar 

  • Nybo L, Nielsen B (2001) Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 534(1):279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybo L, Rasmussen P (2007) Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev 35(3):110–118

    Article  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107(5):1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB, Secher NH (2005) Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288(3):H1461–H1467

    Article  CAS  PubMed  Google Scholar 

  • Peltonen JE, Rusko HK, Rantamäki J, Sweins K, NiittymaÈki S, Viitasalo JT (1997) Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. Eur J Appl Physiol 76(6):495–503

    Article  CAS  Google Scholar 

  • Périard J, Racinais S (2015) Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. Scand J Med Sci Sports 25(S1):135–144

    Article  PubMed  Google Scholar 

  • Rauch H, Gibson ASC, Lambert E, Noakes T (2005) A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med 39(1):34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross ML, Garvican LA, Jeacocke NA, Laursen PB, Abbiss CR, Martin DT, Burke LM (2011) Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc 43(1):123–133

    Article  PubMed  Google Scholar 

  • Ross EZ, Cotter JD, Wilson LC, Fan J-L, Lucas SJ, Ainslie PN (2012) Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans. J Appl Physiol 112(5):748–758. doi:10.1152/japplphysiol.00988.2011

    Article  CAS  PubMed  Google Scholar 

  • Santos-Concejero J, Billaut F, Grobler L, Oliván J, Noakes TD, Tucker R (2015) Maintained cerebral oxygenation during maximal self-paced exercise in elite Kenyan runners. J Appl Physiol 118(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Seifert T, Rasmussen P, Secher NH, Nielsen H (2009) Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta Physiol 196(3):295–302

    Article  CAS  Google Scholar 

  • Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L (2015) Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 47(3):537–546

    Article  PubMed  Google Scholar 

  • Thompson K (2014) Pacing: individual strategies for optimal performance. Human Kinetics, Champaign, IL

    Google Scholar 

  • Tsuji B, Honda Y, Ikebe Y, Fujii N, Kondo N, Nishiyasu T (2015) Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 308(8):R669–R679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker R, Noakes TD (2009) The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med 43(6):e1

    Article  CAS  PubMed  Google Scholar 

  • Tucker R, Rauch L, Harley YX, Noakes TD (2004) Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflügers Archiv 448(4):422–430

    Article  CAS  PubMed  Google Scholar 

  • Verbree J, Bronzwaer A-SG, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, Dahan A, Van Lieshout JJ, van Osch MJ (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol 117(10):1084–1089

    Article  PubMed  Google Scholar 

  • Willie C, Colino F, Bailey D, Tzeng Y, Binsted G, Jones L, Haykowsky M, Bellapart J, Ogoh S, Smith K (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 196(2):221–237

    Article  CAS  PubMed  Google Scholar 

  • Willie C, Macleod D, Shaw A, Smith K, Tzeng Y, Eves N, Ikeda K, Graham J, Lewis N, Day T (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590(14):3261–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Rattray.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattray, B., Smale, B.A., Northey, J.M. et al. Middle cerebral artery blood flow velocity during a 4 km cycling time trial. Eur J Appl Physiol 117, 1241–1248 (2017). https://doi.org/10.1007/s00421-017-3612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3612-2

Keywords

Navigation