Skip to main content
Log in

Spinal and corticospinal pathways are differently modulated when standing at the bottom and the top of a three-step staircase in young and older adults

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the modulation of spinal (group Ia afferents) and corticospinal pathways when young (22.7 ± 1.3 years) and older adults (72.2 ± 7.9 years) stood at the bottom and at the top of a three-step staircase equipped with force platforms.

Method

Changes in submaximal H-reflex amplitude (H 50) and slope of the H-reflex input–output relation (spinal pathway), and in amplitude of motor-evoked potentials (MEP) triggered by transcranial magnetic stimulation (corticospinal pathway) at two intensities (1.1× and 1.2× motor threshold) were recorded in soleus when subjects stood as steady as possible downstairs and upstairs. The centre of pressure (CoP) excursion was analyzed in the time and frequency domains in both conditions.

Results

Regardless of age, the mean CoP velocity was greater when standing upstairs (11.1 ± 3.5 mm s−1) than downstairs (9.0 ± 2.3 mm s−1; p = 0.002). The CoP power spectral density (PSD) in the 0–0.5 Hz band was greater upstairs than downstairs (+18.4%; p = 0.03) whereas PSD in the 2–20Hz frequency band was lesser (−41%) upstairs than downstairs (p < 0.001), regardless of age. In both groups, the H 50 amplitude (−30.6%; p < 0.001) and slope of H-reflex input–output relation (−10.2%; p = 0.002) were lesser when standing upstairs than downstairs, whereas no significant difference was observed in MEP amplitude and silent period between balance conditions (p > 0.05).

Conclusion

These results indicate a lower dependence on spinal pathway to control soleus motor neurones when standing upstairs than downstairs accompanied by a change in postural control. This suggests that healthy older adults preserved their ability to adjust postural control to environmental demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aEMG:

Average value of the rectified EMG

CoP:

Centre of pressure

MEP:

Motor-evoked potential

MVC:

Maximal voluntary contraction

SP:

Silent period

TMS:

Transcranial magnetic stimulation

References

  • Adkin A, Frank J, Carpenter M, Peysar G (2000) Postural control is scaled to level of postural threat. Gait Posture 12(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Adkin A, Campbell A, Chua R, Carpenter M (2008) The influence of postural threat on the cortical response to unpredictable and predictable postural perturbations. Neurosci Lett 435(2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Baudry S (2016) Aging changes the contribution of spinal and corticospinal pathways to control balance. Exerc Sport Sci Rev 44(3):104–109

    Article  PubMed  Google Scholar 

  • Baudry S, Duchateau J (2012) Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance. J Physiol 590:5541–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudry S, Duchateau J (2014) Independent modulation of corticospinal and group I afferents pathways during upright standing. Neuroscience 275:162–169

    Article  CAS  PubMed  Google Scholar 

  • Baudry S, Penzer F, Duchateau J (2014) Input-output characteristics of soleus spinal and corticospinal pathways during upright standing differ between young and elderly adults. Acta Physiol 210(3):667–677

    Article  CAS  Google Scholar 

  • Baudry S, Collignon S, Duchateau J (2015) Influence of age and posture on spinal and corticospinal excitability. Exp Gerontol 69:62–69

    Article  PubMed  Google Scholar 

  • Berg K, Wood-Dauphinee S, Williams J, Maki B (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83(2):7–11

    Google Scholar 

  • Bove M, Trompetto C, Abbruzzese G, Schieppati M (2006) The posture-related interaction between Ia-afferent and descending input on the spinal reflex excitability in humans. Neurosci Lett 397:301–306

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Polych M, Doan J (2006) The effect of anxiety on the regulation of upright standing among younger and older adults. Gait Posture 24(4):397–405

    Article  PubMed  Google Scholar 

  • Carpenter M, Frank J, Silcher C (1999) Surface height effects on postural control: a hypothesis for a stiffness strategy for stance. J Vestib Res 9(4):277–286

    CAS  PubMed  Google Scholar 

  • Cattagni T, Martin A, Scaglioni G (2014) Is spinal excitability of the triceps surae mainly affected by muscle activity or body position? J Neurophysiol 111(12):2525–2532

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Campbell A, Adkin A, Carpenter M (2009) Gait posture. The relationship between fear of falling and human postural control. Gait Posture 29(2):275–279

    Article  PubMed  Google Scholar 

  • Davis J, Horslen B, Nishikawa K, Fukushima K, Chua R, Inglis J, Carpenter M (2011) Human proprioceptive adaptations during states of height-induced fear and anxiety. J Neurophysiol 106(6):3082–3090

    Article  PubMed  Google Scholar 

  • Demura S, Sohee S, Yamaji S (2008) Sex and age differences of relationships among stepping parameters for evaluating dynamic balance in the elderly. J Physiol Anthropol 27(4):207–215

    Article  PubMed  Google Scholar 

  • Dietz V, Schmidtbleicher D, Noth J (1979) Neuronal mechanisms of human locomotion. J Neurophysiol 42(5):1212–1222

    CAS  PubMed  Google Scholar 

  • Dietz V, Mauritz K, Dichgans J (1980) Body oscillations in balancing due to segmental stretch reflex activity. Exp Brain Res 40(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Duarte M, Freitas S (2010) Revision of posturography based on force plate for balance evaluation. Rev Bras Fisioter 14(3):183–192

    Article  PubMed  Google Scholar 

  • Golomer E, Dupui P (2000) Spectral analysis of adult dancers’ sways: sex and interaction vision-proprioception. Int J Neurosci 105(1–4):15–26

    Article  CAS  PubMed  Google Scholar 

  • Horslen B, Murnaghan C, Inglis J, Chua R, Carpenter M (2013) Effects of postural threat on spinal stretch reflexes: evidence for increased muscle spindle sensitivity? J Neurophysiol 110(4):899–906

    Article  PubMed  Google Scholar 

  • Jackson P, Cohen H (1995) An in-depth investigation of 40 stairway accidents and the stair safety literature. J Safety Res 26:151–159

    Article  Google Scholar 

  • Katz R, Meunier S, Pierrot-Deseilligny E (1988) Changes in presynaptic inhibition of Ia fibres in man while standing. Brain 111:417–437

    Article  PubMed  Google Scholar 

  • Kempen G, Yardley L, van Haastregt J, Zijlstra G, Beyer N, Hauer K, Todd C (2008) The short FES-I a shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing 37(1):45–50

    Article  PubMed  Google Scholar 

  • Kim J, Eom G, Kim C, Kim D, Lee J, Park B, Hong J (2010) Sex differences in the postural sway characteristics of young and elderly subjects during quiet natural standing. Geriatr Gerontol Int 10(2):191–198

    PubMed  Google Scholar 

  • Kitabayashi T, Demura S, Noda M, Yamada T (2004) Gender differences in body-sway factors of center of foot pressure in a static upright posture and under the influence of alcohol intake. J Physiol Anthropol Appl Human Sci 23(4):111–118

    Article  PubMed  Google Scholar 

  • Koceja D, Trimble M, Earles D (1993) Inhibition of the soleus H-reflex in standing man. Brain Res 629(1):155–158

    Article  CAS  PubMed  Google Scholar 

  • Magnus R (1926) Physiology of posture. Lancet 11:531–585

    Google Scholar 

  • Mauritz K, Dietz V (1980) Characteristics of postural instability induced by ischemic blocking of leg afferents. Exp Brain Res 38(1):117–119

    Article  CAS  PubMed  Google Scholar 

  • Mauritz K, Dichgans J, Hufschmidt A (1977) The angle of visual roll motion determines displacement of subjective visual vertical. Percept Psychophysiol 22 (6):557–562

    Article  Google Scholar 

  • Mauritz K, Dichgans J, Hufschmidt A (1979) Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain 102:461–482

    Article  CAS  PubMed  Google Scholar 

  • Mauritz K, Dietz V, Haller M (1980) Balancing as a clinical test in the differential diagnosis of sensory-motor disorders. J Neurol Neurosurg Psychiatry 43(5):407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonnell MN, Orekhov Y, Ziemann U (2006) The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res 173:86–93

    Article  CAS  PubMed  Google Scholar 

  • McIlroy W, Bishop D, Staines W, Nelson A, Maki B, Brooke J (2003) Modulation of afferent inflow during the control of balancing tasks using the lower limbs. Brain Res 961(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Merletti R, Botter A, Troiano A, Merlo E, Minetto M (2009) Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech 24(2):122–134

    Article  Google Scholar 

  • Orth M, Rothwell J (2004) The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clin Neurophysiol 115(5):1076–1082

    Article  CAS  PubMed  Google Scholar 

  • Ostir G, Volpato S, Fried L, Chaves P, Guralnik J (2002) Reliability and sensitivity to change assessed for a summary measure of lower body function: results from the Women’s Health and Aging Study. J Clin Epidemiol 55(9):916–921

    Article  PubMed  Google Scholar 

  • Paillard T, Noé F (2015) Techniques and methods for testing the postural function in healthy and pathological subjects. Biomed Res Int

  • Penzer F, Duchateau J, Baudry S (2015) Effects of short-term training combining strength and balance exercises on maximal strength and upright standing steadiness in elderly adults. Exp Gerontol 61:38–46

    Article  PubMed  Google Scholar 

  • Peterka R (2002) Sensorimotor integration in human postural control. J Neurophysiol 88(3):1097–1118

    CAS  PubMed  Google Scholar 

  • Røgind H, Lykkegaard J, Bliddal H, Danneskiold-Samsøe B (2003) Postural sway in normal subjects aged 20–70 years. Clin Physiol Funct Imaging 23(3):171–176

    Article  PubMed  Google Scholar 

  • Rothwell J, Thompson P, Day B, Boyd S, Marsden C (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76(2):159–200

    Article  CAS  PubMed  Google Scholar 

  • Sibley K, Carpenter M, Perry J (2007) Effects of postural anxiety on the soleus H-reflex. Hum Mov Sci 26:103–112

    Article  PubMed  Google Scholar 

  • Sibley K, Mochizuki G, Frank J, McIlroy W (2010) The relationship between physiological arousal and cortical and autonomic responses to postural instability. Exp Brain Res 203(3):533–540

    Article  PubMed  Google Scholar 

  • Singh N, Taylor W, Madigan M, Nussbaum M (2012) The spectral content of postural sway during quiet stance: influences of age, vision and somatosensory inputs. J Electromyogr Kinesiol 22(1):131–136

    Article  PubMed  Google Scholar 

  • Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A (2003) Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 150:222–229

    Article  PubMed  Google Scholar 

  • Varghese J, Scandling D, Joshi R, Aneja A, Craft J, Raman S, Rajagopalan S, Simonetti O, Mihai G (2015) Rapid assessment of quantitative T1, T2 and T2* in lower extremity muscles in response to maximal treadmill exercise. NMR Biomed 28(8):998–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter D, Patla A, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1111–1121

    Google Scholar 

Download references

Acknowledgements

Johanna Johannsson is currently supported by a grant of the “Fonds National de la Recherche (FNR)” of Luxembourg. The authors acknowledge Sarah Collignon for her assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Baudry.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Communicated by Benedicte Schepens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannsson, J., Duchateau, J. & Baudry, S. Spinal and corticospinal pathways are differently modulated when standing at the bottom and the top of a three-step staircase in young and older adults. Eur J Appl Physiol 117, 1165–1174 (2017). https://doi.org/10.1007/s00421-017-3603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3603-3

Keywords

Navigation