Skip to main content

The time course of short-term hypertrophy in the absence of eccentric muscle damage



It has been proposed that the increase in skeletal muscle mass observed during the initial weeks of initiating a resistance training program is concomitant with eccentric muscle damage and edema.


We examined the time course of muscle hypertrophy during 4 weeks of concentric-only resistance training.


Thirteen untrained men performed unilateral concentric-only dumbbell curls and shoulder presses twice per week for 4 weeks. Sets of 8–12 repetitions were performed to failure, and training loads were increased during each session. Subjects consumed 500 ml of whole milk during training. Assessments of soreness, lean mass, echo intensity, muscle thickness, relaxed and flexed arm circumference, and isokinetic strength were performed every 72 or 96 h.


Soreness, echo intensity, relaxed circumference, and peak torque data did not significantly change. Significant increases in lean mass, muscle thickness, and flexed circumference were observed within seven training sessions. Lean mass was elevated at tests #7 (+109.3 g, p = .002) and #8 (+116.1 g, p = .035), with eight different subjects showing changes above the minimal difference of 139.1 g. Muscle thickness was elevated at tests #6 (+0.23 cm, p = .004), #7 (+0.31 cm, p < .001), and #8 (+0.27 cm, p < .001), with ten subjects exceeding the minimal difference of 0.24 cm. There were no changes for the control arm.


In individuals beginning a resistance training program, small but detectable increases in hypertrophy may occur in the absence of eccentric muscle damage within seven training sessions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Analysis of variance


Arbitrary units


Dual energy X-ray absorptiometry


One-repetition maximum


  • Abe T, DeHoyos DV, Pollock ML, Garzarella L (2000) Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol 81(3):174–180. doi:10.1007/s004210050027

    CAS  Article  PubMed  Google Scholar 

  • Armstrong LE (2005) Hydration assessment techniques. Nutr Rev 63(6 Pt 2):S40–S54

    Article  PubMed  Google Scholar 

  • Baechle T, Earle RW (2008) Essentials of strength training and conditioning. 3rd edn. Human Kinetics, Champaign

    Google Scholar 

  • Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM (2007) Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol (1985) 102(6):2232–2239. doi:10.1152/japplphysiol.00024.2007

    CAS  Article  Google Scholar 

  • Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA (2013) Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve 48(4):498–506. doi:10.1002/mus.23785

    Article  PubMed  Google Scholar 

  • Beck TW (2013) The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res 27(8):2323–2337. doi:10.1519/JSC.0b013e318278eea0

    Article  PubMed  Google Scholar 

  • Boone CH, Stout JR, Beyer KS, Fukuda DH, Hoffman JR (2015) Muscle strength and hypertrophy occur independently of protein supplementation during short-term resistance training in untrained men. Appl Physiol Nutr Metab 40(8):797–802. doi:10.1139/apnm-2015-0027

    CAS  Article  PubMed  Google Scholar 

  • Caresio C, Molinari F, Emanuel G, Minetto MA (2015) Muscle echo intensity: reliability and conditioning factors. Clin Physiol Funct Imaging 35(5):393–403. doi:10.1111/cpf.12175

    Article  PubMed  Google Scholar 

  • Damas F et al (2016) Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur J Appl Physiol 116(1):49–56. doi:10.1007/s00421-015-3243-4

    Article  PubMed  Google Scholar 

  • DeFreitas JM, Beck TW, Stock MS, Dillon MA, Kasishke PR 2nd (2011) An examination of the time course of training-induced skeletal muscle hypertrophy. Eur J Appl Physiol 111(11):2785–2790. doi:10.1007/s00421-011-1905-4

    Article  PubMed  Google Scholar 

  • Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD (2006) Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc 38(4):667–674. doi:10.1249/01.mss.0000210190.64458.25

    CAS  Article  PubMed  Google Scholar 

  • Friden J, Sfakianos PN, Hargens AR (1986) Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol (1985) 61(6):2175–2179.

    CAS  Google Scholar 

  • Gibala MJ, MacDougall JD, Tarnopolsky MA, Stauber WT, Elorriaga A (1995) Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol (1985) 78(2):702–708.

    CAS  Google Scholar 

  • Housh TJ, Housh DJ, Weir JP, Weir LL (1996) Effects of unilateral concentric-only dynamic constant external resistance training. Int J Sports Med 17(5):338–343. doi:10.1055/s-2007-972857

    CAS  Article  PubMed  Google Scholar 

  • Hutchesson MJ, Rollo ME, Callister R, Collins CE (2015) Self-monitoring of dietary intake by young women: online food records completed on computer or smartphone are as accurate as paper-based food records but more acceptable. J Acad Nutr Diet 115(1):87–94. doi:10.1016/j.jand.2014.07.036

    Article  PubMed  Google Scholar 

  • Jamurtas AZ et al (2005) Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur J Appl Physiol 95(2–3):179–185. doi:10.1007/s00421-005-1345-0

    Article  PubMed  Google Scholar 

  • Jenkins ND et al (2015a) Neuromuscular adaptations after 2- and 4-weeks of 80% versus 30% 1RM resistance training to failure. J Strength Cond Res. doi:10.1519/JSC.0000000000001308

    Google Scholar 

  • Jenkins ND et al (2015b) Test-retest reliability of single transverse versus panoramic ultrasound imaging for muscle size and echo intensity of the biceps brachii. Ultrasound Med Biol 41(6):1584–1591. doi:10.1016/j.ultrasmedbio.2015.01.017

    Article  PubMed  Google Scholar 

  • Krentz JR, Farthing JP (2010) Neural and morphological changes in response to a 20-day intense eccentric training protocol. Eur J Appl Physiol 110(2):333–340. doi:10.1007/s00421-010-1513-8

    Article  PubMed  Google Scholar 

  • Kubo K, Kanehisa H, Ito M, Fukunaga T (2001) Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol (1985) 91(1):26–32.

    CAS  Google Scholar 

  • Lixandrao ME et al (2016) Time course of resistance training-induced muscle hypertrophy in the elderly. J Strength Cond Res 30(1):159–163. doi:10.1519/JSC.0000000000001019

    Article  PubMed  Google Scholar 

  • McCully KK, Faulkner JA (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol (1985) 59(1):119–126.

    CAS  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13(2):88–97

    Article  PubMed  Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    CAS  PubMed  Google Scholar 

  • Nosaka K, Clarkson PM (1995) Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc 27(9):1263–1269

    CAS  Article  PubMed  Google Scholar 

  • Nosaka K, Sakamoto K (2001) Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33(1):22–29

    CAS  Article  PubMed  Google Scholar 

  • Nosaka K, Newton M, Sacco P (2002) Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports 12(6):337–346

    Article  PubMed  Google Scholar 

  • Rutherford OM, Jones DA (1986) The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol 55(1):100–105

    CAS  Article  PubMed  Google Scholar 

  • Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol (1985) 102(1):368–373. doi:10.1152/japplphysiol.00789.2006

    CAS  Article  Google Scholar 

  • Staron RS et al (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol (1985) 76(3):1247–1255

    CAS  Google Scholar 

  • Stevens JP (ed) (2007) Intermediate statistics: a modern approach. 3rd edn. Lawrence Erlbaum Associates, Taylor & Francis Group, New York

    Google Scholar 

  • Stock MS, Thompson BJ (2014) Sex comparisons of strength and coactivation following ten weeks of deadlift training. J Musculoskelet Neuronal Interact 14(3):387–397

    CAS  PubMed  Google Scholar 

  • Stock MS, Olinghouse KD, Drusch AS, Mota JA, Hernandez JM, Akalonu CC, Thompson BJ (2016) Evidence of muscular adaptations within four weeks of barbell training in women. Hum Mov Sci 45:7–22. doi:10.1016/j.humov.2015.11.004

    Article  PubMed  Google Scholar 

  • Warren GL, Palubinskas LE (2008) Human and animal experimental muscle injury models. In: Tiidus PM (ed) Skeletal muscle damage and repair. Human Kinetics, Champaign, IL, pp 13–36

    Google Scholar 

  • Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27(1):43–59

    CAS  Article  PubMed  Google Scholar 

  • Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240. doi:10.1519/15184.1

    PubMed  Google Scholar 

  • Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol 13(4):e1002128. doi:10.1371/journal.pbio.1002128

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilhelm EN et al (2014) Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol 60:207–214. doi:10.1016/j.exger.2014.11.007

    Article  PubMed  Google Scholar 

Download references


We wish to thank Tyler Cook, Thomas Risenhoover, Allan Venegas, Aaron Woodward, and Matt Hamm for their assistance with the training and spotting of subjects. We also wish to thank the Texas Tech University Honors College for their support of Ms. Jacobo through the Undergraduate Research Scholar program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matt S. Stock.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stock, M.S., Mota, J.A., DeFranco, R.N. et al. The time course of short-term hypertrophy in the absence of eccentric muscle damage. Eur J Appl Physiol 117, 989–1004 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Muscle mass
  • Lean mass
  • Soreness
  • Concentric
  • Torque
  • Force