Skip to main content
Log in

Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: a double-blind placebo-controlled cross-over study

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim was to investigate whether 6 weeks of normobaric “Live High-Train Low” (LHTL) using altitude tents affect highly trained athletes incremental peak power, 26-km time-trial cycling performance, 3-min all-out performance, and 30-s repeated sprint ability. In a double-blinded, placebo-controlled cross-over design, seven highly trained triathletes were exposed to 6 weeks of normobaric hypoxia (LHTL) and normoxia (placebo) for 8 h/day. LHTL exposure consisted of 2 weeks at 2500 m, 2 weeks at 3000 m, and 2 weeks at 3500 m. Power output during an incremental test, ~26-km time trial, 3-min all-out exercise, and 8 × 30 s of all-out sprint was evaluated before and after the intervention. Following at least 8 weeks of wash-out, the subjects crossed over and repeated the procedure. Incremental peak power output was similar after both interventions [LHTL: 375 ± 74 vs. 369 ± 70 W (pre-vs-post), placebo: 385 ± 60 vs. 364 ± 79 W (pre-vs-post)]. Likewise, mean power output was similar between treatments as well as before and after each intervention for time trial [LHTL: 257 ± 49 vs. 254 ± 54 W (pre-vs-post), placebo: 267 ± 57 vs. 267 ± 52 W (pre-vs-post)], and 3-min all-out [LHTL: 366 ± 68 vs. 369 ± 72 W (pre-vs-post), placebo: 365 ± 66 vs. 355 ± 71 W (pre-vs-post)]. Furthermore, peak- and mean power output during repeated sprint exercise was similar between groups at all time points (n = 5). In conclusion, 6 weeks of normobaric LHTL using altitude tents simulating altitudes of 2500–3500 m conducted in a double-blinded, placebo-controlled cross-over design do not affect power output during an incremental test, a ~26-km time-trial test, or 3-min all-out exercise in highly trained triathletes. Furthermore, 30 s of repeated sprint ability was unaltered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LHTL:

Live high-train low

VO2peak :

Maximal oxygen uptake

References

  • Bonetti DL, Hopkins WG (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 39:107–127

    Article  PubMed  Google Scholar 

  • Böning D, Rojas J, Serrato M, Reyes O, Coy L, Mora M (2008) Extracellular pH defense against lactic acid in untrained and trained altitude residents. Eur J Appl Physiol 103(2):127–137

    Article  PubMed  Google Scholar 

  • Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Saas P, Chorvot M, Cornolo J, Olsen NV, Richalet JP (2006) Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol (1985) 100:203–211

    Article  Google Scholar 

  • Calbet JA, Losa-Reyna J, Torres-Peralta R, Rasmussen P, Ponce-Gonzáles JG, Sheel AW, de la Calle-Herrero J, Guadalupe-Grau A, Morales-Alamo D, Fuentes T, Rodríguez-Garcia L, Siebenmann C, Bouschel R, Lundby C (2015) Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O2 diffusing capacity. J Physiol 593(20):4649–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol (1985) 85:1448–1456

    CAS  Google Scholar 

  • Clark SA, Aughey RJ, Gore CJ, Hahn AG, Townsend NE, Kinsman TA, Chow CM, McKenna MJ, Hawley JA (2004) Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. J Appl Physiol (1985) 96:517–525

    Article  Google Scholar 

  • Cnaan A, Laird NM, Slasor P (1997) Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16:2349–2380

    Article  CAS  PubMed  Google Scholar 

  • Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490

    Article  PubMed  Google Scholar 

  • Garvican LA, Pottgiesser T, Martin DT, Schumacher YO, Barras M, Gore CJ (2011) The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Eur J Appl Physiol 111:1089–1101

    Article  PubMed  Google Scholar 

  • Garvican-Lewis LA, Sharpe K, Gore CJ (2016) Time for a new metric for hypoxic dose? J Appl Physiol (1985) 121:352–355

    Article  Google Scholar 

  • Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, Stanef T, Barnes P, Parisotto R, Martin D, Pyne D (1998) Altitude training at 2690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport 1:156–170

    Article  CAS  PubMed  Google Scholar 

  • Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, McKenna MJ (2001) Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 173:275–286

    Article  CAS  PubMed  Google Scholar 

  • Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF (2013) Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med 47(Suppl 1):i31–i39

    Article  PubMed  PubMed Central  Google Scholar 

  • Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ (2015) Pre-altitude serum ferritin levels and daily oral iron supplementation dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One 10(8):e0135120

    Article  PubMed  PubMed Central  Google Scholar 

  • Greer F, McLean C, Graham TE (1998) Caffeine, performance and metabolism during repeated Wingate exercise tests. J Appl Physiol (1985) 85(4):1502–1508.

    CAS  Google Scholar 

  • Hauser A, Schmitt L, Troesch S, Saugy JJ, Cejuela-Anta R, Faiss R, Robinson N, Wehrlin JP, Millet GP (2016) Similar hemoglobin mass response in hypobaric and normobaric hypoxia in athletes. Med Sci Sports Exerc 48:734–741

    Article  CAS  PubMed  Google Scholar 

  • Hinckson EA, Hopkins WG, Fleming JS, Edwards T, Pfitzinger P, Hellemans J (2005) Sea-level performance in runners using altitude tents: a field study. J Sci Med Sport 8:451–457

    Article  CAS  PubMed  Google Scholar 

  • Hureau TJ, Romer LM, Amann M (2016) The ‘sensory tolerance limit’: a hypothetical construct determining exercise performance? Eur J Sport Sci 7:1–12

    Article  Google Scholar 

  • Koury MJ, Ponka P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24:105–131

    Article  CAS  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol (1985) 83:102–112.

    CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J (2005) Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol (1985) 99:2053–2055.

    Article  Google Scholar 

  • Lundby C, Millet GP, Calbet JA, Bartsch P, Subudhi AW (2012) Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med 46:792–795

    Article  PubMed  Google Scholar 

  • Neya M, Enoki T, Kumai Y, Sugoh T, Kawahara T (2007) The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol (1985) 103:828–834.

    Article  CAS  Google Scholar 

  • Nordsborg NB, Siebenmann C, Jacobs RA, Rasmussen P, Diaz V, Robach P, Lundby C (2012) Four weeks of normobaric “live high-train low” do not alter muscular or systemic capacity for maintaining pH and K(+) homeostasis during intense exercise. J Appl Physiol (1985) 112:2027–2036

    Article  CAS  Google Scholar 

  • Nummela A, Rusko H (2000) Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci 18:411–419

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen P, Siebenmann C, Díaz V, Lundby C (2013) Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Med Sci Sports Exerc 45(9):1767–1772

    Article  PubMed  Google Scholar 

  • Richalet JP, Gore CJ (2008) Live and/or sleep high:train low, using normobaric hypoxia. Scand J Med Sci Sports 18(Suppl 1):29–37

    Article  PubMed  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006) Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol 96:423–433

    Article  PubMed  Google Scholar 

  • Roberts AD, Clark SA, Townsend NE, Anderson ME, Gore CJ, Hahn AG (2003) Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high:train low altitude exposure. Eur J Appl Physiol 88:390–395

    Article  CAS  PubMed  Google Scholar 

  • Rusko HK, Tikkanen HO, Peltonen JE (2004) Altitude and endurance training. J Sports Sci 22:928–944 (discussion 945)

    Article  PubMed  Google Scholar 

  • Saugy JJ, Schmitt L, Cejuela R, Faiss R, Hauser A, Wehrlin JP, Rudaz B, Delessert A, Robinson N, Millet GP (2014) Comparison of “Live High-Train Low” in normobaric versus hypobaric hypoxia. PLoS One 9:e114418

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ (2009) Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport 12:67–72

    Article  CAS  PubMed  Google Scholar 

  • Saunders PU, Ahlgrim C, Vallance B, Green DJ, Robertson EY, Clark SA, Schumacher YO, Gore CJ (2010) An attempt to quantify the placebo effect from a three-week simulated altitude training camp in elite race walkers. Int J Sports Physiol Perform 5(4):521–534

    Article  PubMed  Google Scholar 

  • Schmitt L, Millet G, Robach P, Nicolet G, Brugniaux JV, Fouillot JP, Richalet JP (2006) Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol 97:627–636

    Article  PubMed  Google Scholar 

  • Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C (2012) “Live high-train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol (1985) 112:106–117

    Article  Google Scholar 

  • Siebenmann C, Cathomen A, Hug M, Keiser S, Lundby AK, Hilty MP, Goetze JP, Rasmussen P, Lundby C (2015) Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude. J Appl Physiol (1985) 119:1194–1201

    Article  CAS  Google Scholar 

  • Spriet LL, Gledhill N, Froese AB, Wilkes DL (1986) Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J Appl Physiol (1985) 61(5):1942–1948

    CAS  Google Scholar 

  • Stray-Gundersen J, Chapman RF, Levine BD (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985) 91:1113–1120

    CAS  Google Scholar 

  • Wehrlin JP, Zuest P, Hallen J, Marti B (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol (1985) 100:1938–1945

    Article  CAS  Google Scholar 

  • Wilber RL, Stray-Gundersen J, Levine BD (2007) Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 39:1590–1599

    Article  PubMed  Google Scholar 

  • Williams MH, Wesseldine S, Somma T, Schuster R (1981) The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc 13(3):169–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank all the subjects participating in the study. The study was supported by Team Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Baastrup Nordsborg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susan Hopkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejder, J., Andersen, A.B., Buchardt, R. et al. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: a double-blind placebo-controlled cross-over study. Eur J Appl Physiol 117, 979–988 (2017). https://doi.org/10.1007/s00421-017-3586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3586-0

Keywords

Navigation