Skip to main content

The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength

Abstract

Purpose

Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength.

Methods

Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer.

Results

The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm3, p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm2, p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength.

Conclusions

The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ANOVA:

Analyses of variance

BFLH:

Biceps femoris long head

ICC:

Intraclass correlation

LOA:

Limits of agreement

NH:

Nordic hamstring

PCSA:

Physiological cross-sectional area

ROI:

Region of interest

SEM:

Standard error of the mean

References

  • Akagi R, Takahashi H (2014) Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle. Scand J Med Sci Sports 24:950–957

    CAS  Article  PubMed  Google Scholar 

  • Alegre L, Jiménez F, Gonzalo-Orden J, Martin-Acero R, Aguado X (2006) Effects of dynamic resistance training on fascicle length and isometric strength. J Sports Sci 24:501–508

    Article  PubMed  Google Scholar 

  • Alonso J, Edouard P, Fischetto G, Adams B, Depiesse F, Mountjoy M (2012) Determination of future prevention strategies in elite track and field: analysis of Daegu 2011 IAAF championships injuries and illnesses surveillance. Br J Sports Med 46:505–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnason A, Andersen TE, Holme I, Engebretsen L, Bahr R (2008) Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports 18:40–48

    CAS  Article  PubMed  Google Scholar 

  • Askling C, Karlsson J, Thorstensson A (2003) Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports 13:244–250

    CAS  Article  PubMed  Google Scholar 

  • Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA (2013) Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve 48:498–506

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575

    Article  PubMed  Google Scholar 

  • Bourne MN, Williams MD, Opar DA et al (2016) Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. doi:10.1136/bjsports-2016-096130

    Google Scholar 

  • Brockett CL, Morgan DL, Proske U (2001) Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 33:783–790

    CAS  Article  PubMed  Google Scholar 

  • Brooks JH, Fuller CW, Kemp SP, Reddin DB (2005) Epidemiology of injuries in english professional rugby union: part 1 match injuries. Br J Sports Med 39:757–766

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Brooks JH, Fuller CW, Kemp SP, Reddin DB (2006) Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 34:1297–1306

    Article  PubMed  Google Scholar 

  • Brughelli M, Cronin J (2007) Altering the length–tension relationship with eccentric exercise—implications for performance and injury. Sports Med 37:807–826

    Article  PubMed  Google Scholar 

  • Chumanov ES, Heiderscheit BC, Thelen DG (2007) The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 40:3555–3562

    Article  PubMed  Google Scholar 

  • Clark R, Bryant A, Culgan J, Hartley B (2005) The effects of eccentric hamstring strength training on dynamic jumping performance and isokinetic strength parameters: a pilot study on the implications for the prevention of hamstring injuries. Phys Ther Sport 6:67–73

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum Associates, Hillsdale

    Google Scholar 

  • Curran-Everett D, Benos DJ (2004) Guidelines for reporting statistics in journals published by the American Physiological Society. Adv Physiol Educ 28:85–87

    Article  PubMed  Google Scholar 

  • De Smet A, Best T (2000) MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 174:393–399

    Article  Google Scholar 

  • Delahunt E, McGroarty M, De Vito G, Ditroilo M (2016) Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol 116:663–672

    Article  PubMed  Google Scholar 

  • Dempster WT (1955) Space requirements of the sealed operator. In: WADC technical report, Wright Patterson Air Force Base, Ohio, pp 55–159

  • Duclay J, Martin A, Duclay A, Cometti G, Pousson M (2009) Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve 39:819–827

    Article  PubMed  Google Scholar 

  • Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An K (2013) Validation of shear wave elastography in skeletal muscle. J Biomech 46:2381–2387

    Article  PubMed  Google Scholar 

  • Ekstrand J, Hagglund M, Walden M (2011a) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232

    Article  PubMed  Google Scholar 

  • Ekstrand J, Hagglund M, Walden M (2011b) Injury incidence and injury patterns in professional football: The UEFA injury study. Br J Sports Med 45:553–558

    CAS  Article  PubMed  Google Scholar 

  • Ekstrand J, Healy JC, Walden M, Lee JC, English B, Hagglund M (2012) Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med 46:112–117

    Article  PubMed  Google Scholar 

  • Ekstrand J, Hagglund M, Kristenson K, Magnusson H, Walden M (2013) Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA champions league injury study. Br J Sports Med 47:732–737

    Article  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H (2010) Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol 110:1117–1125

    Article  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  • Feeley BT, Kennelly S, Barnes RP et al (2008) Epidemiology of national football league training camp injuries from 1998 to 2007. Am J Sports Med 36:1597–1160

    Article  PubMed  Google Scholar 

  • Franchi MV, Atherton PJ, Reeves ND et al (2014) Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf) 210:642–654

    CAS  Article  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG et al (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10:926–934

    Article  Google Scholar 

  • Guex K, Degache F, Morisod C, Sailly M, Millet GP (2016) Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol 7:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkins D, Hull ML (1990) A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 23:487–494

    CAS  Article  PubMed  Google Scholar 

  • Hubal MJ, Gordish-Dressman H, Thompson PD et al (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37:964–972

    Article  PubMed  Google Scholar 

  • Iga J, Fruer CS, Deighan M, Croix MD, James DV (2012) ‘Nordic’ hamstrings exercise–engagement characteristics and training responses. Int J Sports Med 33:1000–1004

    CAS  Article  PubMed  Google Scholar 

  • Kellis E, Baltzopoulos V (1996) Gravitational moment correction in isokinetic dynamometry using anthropometric data. Med Sci Sports Exerc 28:900–907

    CAS  Article  PubMed  Google Scholar 

  • Kovanen V, Suominen H, Heikkinen E (1984) Mechanical properties of fast and slow skeletal muscle with special reference to collagen and endurance training. J Biomech 17:725–735

    CAS  Article  PubMed  Google Scholar 

  • Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieber RL, Bodine-Fowler SC (1993) Skeletal muscle mechanics: implications for rehabilitation. Phys Ther 73:844–856

    CAS  Article  PubMed  Google Scholar 

  • Lieber RL, Fridén J (1993) Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol 74:520–526

    CAS  PubMed  Google Scholar 

  • Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R (2004) A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports 14:311–317

    Article  PubMed  Google Scholar 

  • Orchard JW, Seward H, Orchard JJ (2013) Results of 2 decades of injury surveillance and public release of data in the australian football league. Am J Sports Med 41:734–741

    Article  PubMed  Google Scholar 

  • Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P (2011) Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med 39:2296–2303

    Article  PubMed  Google Scholar 

  • Potier TG, Alexander CM, Seynnes OR (2009) Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol 105:939–944

    Article  PubMed  Google Scholar 

  • Rosenthal JA (1996) Qualitative descriptors of strength of association and effect size. J Soc Serv Res 21:37–59

    Article  Google Scholar 

  • Sharifnezhad A, Marzilger R, Arampatzis A (2014) Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle. J Exp Biol 217:2726–2733

    Article  PubMed  Google Scholar 

  • Tansel RB, Salci Y, Yildirim A, Kocak S, Korkusuz F (2008) Effects of eccentric hamstring strength training on lower extremity strength of 10–12 year old male basketball players. Isokinet Exerc Sci 16:81–85

    Google Scholar 

  • van der Horst N, Smits DW, Petersen J, Goedhart EA, Backx FJ (2015) The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med 43:1316–1323

    Article  PubMed  Google Scholar 

  • Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA (1990) Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol 61:453–460

    CAS  Article  PubMed  Google Scholar 

  • Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467:1074–1082

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayla D. Seymore.

Additional information

Communicated by Olivier Seynnes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seymore, K.D., Domire, Z.J., DeVita, P. et al. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol 117, 943–953 (2017). https://doi.org/10.1007/s00421-017-3583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3583-3

Keywords

  • Eccentric
  • Intervention
  • Injury prevention
  • Biomechanics
  • Ultrasound
  • Dynamometry