European Journal of Applied Physiology

, Volume 117, Issue 4, pp 665–677 | Cite as

Cross-education of muscular strength is facilitated by homeostatic plasticity

  • Ashlyn K. Frazer
  • Jacqueline Williams
  • Michael Spittle
  • Dawson J. Kidgell
Original Article

Abstract

Purpose

We examined the effect of priming the ipsilateral motor cortex (M1) using anodal transcranial direct current stimulation (tDCS) prior to a single bout of strength training on the cross-transfer of strength and corticospinal excitability and inhibition of the ipsilateral M1.

Methods

In a randomized double-blinded cross-over design, changes in strength and indices of corticospinal plasticity were analysed in 13 adults who were exposed to 20 min of ipsilateral anodal and sham tDCS (applied to the ipsilateral M1 to the training arm) followed by a single strength training session of the right Biceps Brachii only.

Results

The induction of homeostatic plasticity via anodal tDCS priming, significantly increased strength of the untrained left Biceps Brachii (12%) compared to sham tDCS (2%), increased corticospinal excitability (12–33%) and cross-activation (25%) when ipsilateral anodal tDCS was applied to the right M1 prior to a single session of strength training. Interestingly, ipsilateral sham tDCS and strength training resulted in an average increase in MEP amplitude of 2–32%.

Conclusion

The novel findings of this study include: priming the ipsilateral M1 via anodal tDCS prior to a single bout of strength training augments the cross-transfer of strength which is manifested by an increase in corticospinal excitability and cross-activation. These findings provide insight into how priming methods that induce homeostatic plasticity may be used to enhance the cross-education phenomenon.

Keywords

Cross-education Homeostatic plasticity Priming Strength training Transcranial direct current stimulation 

Abbreviations

1RM

One-repetition maximum

Anodal tDCS + ST

Anodal transcranial direct current stimulation and strength training

GABA

γ-Aminobutyric acid

IHI

Interhemispheric inhibition

MEPs

Motor-evoked potentials

MMAX

Maximum compound wave

MVIC

Maximal voluntary isometric contraction

M1

Primary motor cortex

NIBS

Non-invasive brain stimulation

rmsEMG

Root-mean square electromyography

sEMG

Surface electromyography

Sham tDCS + ST

Sham transcranial direct current stimulation and strength training

SICI

Short-interval intracortical inhibition

ST

Strength training

tDCS

Transcranial direct current stimulation

TMS

Transcranial magnetic stimulation

References

  1. Antal A BS, Nitsche MA, Paulus W (2008) Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia 46:3157–3161CrossRefPubMedGoogle Scholar
  2. Arányi Z, Rösler K (2002) Effort-induced mirror movements. Exp Brain Res 145:76–82CrossRefPubMedGoogle Scholar
  3. Bastani A, Jaberzadeh S (2012) Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis. Clin Neurophysiol 123:644–657. doi:10.1016/j.clinph.2011.08.029 CrossRefPubMedGoogle Scholar
  4. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans The. J Physiol 591:1987–2000. doi:10.1113/jphysiol.2012.249730 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boggio P et al (2006) Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett 404:232–236CrossRefPubMedGoogle Scholar
  6. Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101:1514–1522. doi:10.1152/japplphysiol.00531.2006 CrossRefPubMedGoogle Scholar
  7. Carroll TJ, Lee M, Hsu M, Sayde J (2008) Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J Appl Physiol 104:1656–1664. doi:10.1152/japplphysiol.01351.2007 CrossRefPubMedGoogle Scholar
  8. Carson RG, Nelson BD, Buick AR, Carroll TJ, Kennedy NC, Cann RM (2013) Characterizing changes in the excitability of corticospinal projections to proximal muscles of the upper limb. Brain Stimul 6:760–768. doi:10.1016/j.brs.2013.01.016 CrossRefPubMedGoogle Scholar
  9. Christie A, Kamen G (2013) Cortical inhibition is reduced following short-term training in young and older adults. AGE 36:749–758CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coombs TA, Frazer AK, Horvath DM, Pearce AJ, Howatson G, Kidgell DJ (2016) Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers. Eur J Appl Physiol 116:1757–1769CrossRefPubMedGoogle Scholar
  11. Dettmers C et al (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74:802–815PubMedGoogle Scholar
  12. Farthing JP, Chilibeck PD (2003) The effect of eccentric training at different velocities on cross-education. Eur J Appl Physiol 89:570–577. doi:10.1007/s00421-003-0841-3 CrossRefPubMedGoogle Scholar
  13. Farthing JP, Zehr EP (2014) Restoring symmetry: clinical applications of cross-education. Exerc Sport Sci Rev 42:70–75. doi:10.1249/jes.0000000000000009 CrossRefPubMedGoogle Scholar
  14. Farthing JP, Chilibeck PD, Binsted G (2005) Cross-education of arm muscular strength is unidirectional in right-handed individuals. Med Sci Sports Exerc 37:1594–1600CrossRefPubMedGoogle Scholar
  15. Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248. doi:10.1007/s00221-001-0988-2 CrossRefPubMedGoogle Scholar
  16. Fregni F, Gimenes R, Valle AC, Ferreira MJL, Rocha RR, Natalle L, Bravo R, Rigonatti SP, Freedman SD, Nitsche MA, Pascual-Leone A, Boggio PS (2006) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54:3988–3998CrossRefPubMedGoogle Scholar
  17. Garfinkel S, Cafarelli E (1992) Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc 24:1220CrossRefPubMedGoogle Scholar
  18. Hendy A, Kidgell D (2014) Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Exp Brain Res 232:3243–3252. doi:10.1007/s00221-014-4016-8 CrossRefPubMedGoogle Scholar
  19. Hendy AM, Teo W, Kidgell DJ (2015) Anodal tDCS prolongs the cross-education of strength and corticomotor plasticity. Med Sci Sports Exerc 48:1788–1797CrossRefGoogle Scholar
  20. Hinder MR, Schmidt MW, Garry MI, Summers JJ (2010) The effect of ballistic thumb contractions on the excitability of the ipsilateral motor cortex. Exp Brain Res 201:229–238. doi:10.1007/s00221-009-2029-5 CrossRefPubMedGoogle Scholar
  21. Hortobagyi T, Lambert NJ, Hill JP (1997) Greater cross education following training with muscle lengthening than shortening. Med Sci Sports Exerc 29:107–112CrossRefPubMedGoogle Scholar
  22. Hortobagyi T et al (2011) Interhemispheric plasticity in human. Med Sci Sports Exerc 43:1188–1199CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003a) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459. doi:10.1152/jn.01001.2002
  24. Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003b) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459. doi:10.1152/jn.01001.2002
  25. Howatson G et al (2011) Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. Eur J Neurosci 33:978–990. doi:10.1111/j.1460-9568.2010.07567.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499CrossRefPubMedGoogle Scholar
  27. Hunter T, Sacco P, Nitsche MA, Turner DL (2009) Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 587:2949–2961. doi:10.1113/jphysiol.2009.169284 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Keel JC, Smith MJ, Wassermann EM (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clin neurophysiol 112:720CrossRefPubMedGoogle Scholar
  29. Kidgell DJ, Pearce AJ (2010) Corticospinal properties following short-term strength training of an intrinsic hand muscle. Hum Mov Sci 29:631–641. doi:10.1016/j.humov.2010.01.004 CrossRefPubMedGoogle Scholar
  30. Kidgell D, Stokes M, Castricum T, Pearce A (2010) Neurophysiological responses after short-term strength training of the biceps brachii muscle. J Strength Cond Res 24:3123–3132CrossRefPubMedGoogle Scholar
  31. Kidgell D, Goodwill A, Frazer A, Daly R (2013) Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci 14:64CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kidgell DJ, Frazer AK, Rantalainen T, Ruotsalainen I, Ahtiainen J, Avela J, Howatson G (2015) Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 300:566–575. doi:10.1016/j.neuroscience.2015.05.057 CrossRefPubMedGoogle Scholar
  33. Kobayashi M, Pascual-Leone A Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156 doi:10.1016/S1474-4422(03)00321-1
  34. Kujirai T et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee M, Gandevia SC, Carroll TJ (2009) Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin Neurophysiol 120:802–808. doi:10.1016/j.clinph.2009.01.002 CrossRefPubMedGoogle Scholar
  36. Lee M, Hinder M, Gandevia SC, Carroll TJ (2010) The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice J. Physiology 588:201–212CrossRefGoogle Scholar
  37. Leung M, Rantalainen T, Teo WP, Kidgell D (2015) Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience 305:99–108. doi:10.1016/j.neuroscience.2015.08.007 CrossRefPubMedGoogle Scholar
  38. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247. doi:10.1093/brain/awf238 CrossRefPubMedGoogle Scholar
  39. Magnus CRA, Boychuk K, Kim SY, Farthing JP (2014) At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb. Scand J Med Sci Sports 24:586–593 doi:10.1111/sms.12037 CrossRefPubMedGoogle Scholar
  40. Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clinical Neurophysiol 111:344–349 doi:10.1016/S1388-2457(99)00243-6 CrossRefGoogle Scholar
  41. Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol 96:1861–1866. doi:10.1152/japplphysiol.00541.2003 CrossRefPubMedGoogle Scholar
  42. Munn J, Herbert RD, Hancock MJ, Gandevia SC (2005a) Resistance training for strength: effect of number of sets and contraction speed. Med Sci Sports Exerc 37:1622–1626Google Scholar
  43. Munn J, Herbert RD, Hancock MJ, Gandevia SC (2005b) Training with unilateral resistance exercise increases contralateral strength. J Appl Physiol 99:1880–1884. doi:10.1152/japplphysiol.00559.2005
  44. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901 doi:10.1212/wnl.57.10.1899 CrossRefPubMedGoogle Scholar
  46. Nitsche MA et al (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301. doi:10.1113/jphysiol.2003.049916 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nitsche MA et al (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 568:291–303. doi:10.1113/jphysiol.2005.092429 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nitsche MA et al (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117. doi:10.1152/jn.01312.2006 CrossRefPubMedGoogle Scholar
  49. Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  50. Pearce AJ, Hendy A, Bowen WA, Kidgell DJ (2013) Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training. Scand J Med Sci Sports 23:740–748CrossRefPubMedGoogle Scholar
  51. Pellicciari MC, Brignani D, Miniussi C (2013) Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage 83:569–580 doi:10.1016/j.neuroimage.2013.06.076 CrossRefPubMedGoogle Scholar
  52. Perez MA, Cohen LG (2008) Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci 28:5631–5640. doi:10.1523/jneurosci.0093-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Reis J et al (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci 106:1590–1595 doi:10.1073/pnas.0805413106 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rothwell JC, Day BL, Thompson PD, Kujirai T (2009) Short latency intracortical inhibition: one of the most popular tools in human motor neurophysiology. J Physiol 587:11–12. doi:10.1113/jphysiol.2008.162461 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ruddy KL, Carson RG (2013) Neural pathways mediating cross education of motor function. Front Hum Neurosci. doi:10.3389/fnhum.2013.00397 PubMedPubMedCentralGoogle Scholar
  56. Ruotsalainen I, Ahtiainen J, Kidgell DJ, Avela J (2014) Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. Eur J Appl Physiol 114:1545–1553CrossRefPubMedGoogle Scholar
  57. Siebner HR (2010) A primer on priming the human motor cortex. Clin Neurophysiol 121:461–463. doi:10.1016/j.clinph.2009.12.009 CrossRefPubMedGoogle Scholar
  58. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H (2011) Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49:800–804. doi:10.1016/j.neuropsychologia.2011.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Suzuki K et al (2012) Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers. Int J Neurosci 122:675–681. doi:10.3109/00207454.2012.707715 CrossRefPubMedGoogle Scholar
  60. van Duinen H, Renken R, Maurits NM, Zijdewind I (2008) Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle. Hum Brain Mapp 29:281–299. doi:10.1002/hbm.20388 CrossRefPubMedGoogle Scholar
  61. Vines B, Cerruti C, Schlaug G (2008) Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci 9:103CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wilson S, Lockwood R, Thickbroom G, Mastaglia F (1993) The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci 114:216–222CrossRefPubMedGoogle Scholar
  63. Zhou S (2000) Chronic neural adaptations to unilateral exercise: Mechanisms of cross education. Exerc Sport Sci Rev 28:177–184PubMedGoogle Scholar
  64. Ziemann U, Hallett M (2001) Hemispheric asymmetry of ipsilateral motor cortex activation during unimanual motor tasks: further evidence for motor dominance. Clin Neurophysiol 112:107–113. doi:10.1016/S1388-2457(00)00502-2 CrossRefPubMedGoogle Scholar
  65. Ziemann U, Siebner HR (2008) Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 1:60–66. doi:10.1016/j.brs.2007.08.003 CrossRefPubMedGoogle Scholar
  66. Ziemann U et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182. doi:10.1016/j.brs.2008.06.006 CrossRefPubMedGoogle Scholar
  67. Zijdewind I, Butler JE, Gandevia SC, Taylor JL (2006) The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Exp Brain Res 175:526–535. doi:10.1007/s00221-006-0570-z CrossRefPubMedGoogle Scholar
  68. Zult T, Howatson G, Kádár E, Farthing J, Hortobágyi T (2014) Role of the Mirror-Neuron System in Cross-Education. Sports Med 44:159–178. doi:10.1007/s40279-013-0105-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ashlyn K. Frazer
    • 1
  • Jacqueline Williams
    • 1
  • Michael Spittle
    • 1
  • Dawson J. Kidgell
    • 2
  1. 1.Institute of Sport, Exercise and Active LivingVictoria UniversityMelbourneAustralia
  2. 2.Discipline of Exercise Science, School of Allied HealthLa Trobe UniversityMelbourneAustralia

Personalised recommendations