European Journal of Applied Physiology

, Volume 117, Issue 2, pp 345–358 | Cite as

Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise

  • William J. Smiles
  • Miguel S. Conceição
  • Guilherme D. Telles
  • Mara P. T. Chacon-Mikahil
  • Cláudia R. Cavaglieri
  • Felipe C. Vechin
  • Cleiton A. Libardi
  • John A. Hawley
  • Donny M. Camera
Original Article

Abstract

Purpose

Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle.

Methods

In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO2peak), or low-intensity cycling with BFR (15 min, 40% VO2peak). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout.

Results

END increased ULK1Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPKThr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001).

Conclusion

A single bout of low-intensity cycling with BFR is insufficient to induce intracellular “stress” responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.

Keywords

Blood-flow restriction Exercise Autophagy Mitophagy 

Abbreviations

AMPK

AMP-activated protein kinase

ANOVA

Analysis of variance

Atg

Autophagy-related gene

BFR

Blood-flow restriction

BM

Body mass

BNIP3

Bcl-2/adenovirus E1B 19 kDa-interacting protein-3

eIF2α

Eukaryotic initiation factor 2α

eIF2Bε

Eukaryotic initiation factor 2Bε

END

Endurance exercise

ERK1/2

Extracellular signal-regulated kinase 1/2

ES

Effect size

GLUT4

Glucose transporter 4

GS

Glycogen synthase

GSK3β

Glycogen synthase kinase 3β

HK

Hexokinase

LC3b

Microtubule-associated protein-1 light chain 3 beta

MAPK

Mitogen-activated protein kinase

mTORC1

Mechanistic target of rapamycin complex 1

PDK4

Pyruvate dehydrogenase kinase 4

PGC-1α

PPARγ-coactivator-1α

REX

Resistance exercise

RM

Repetition maximum

SQSTM1

p62/sequestosome-1

ULK1

Unc-51-like kinase 1

VO2peak

Peak oxygen uptake

W

Watts

References

  1. Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985) 100(5):1460–1466. doi:10.1152/japplphysiol.01267.2005 CrossRefGoogle Scholar
  2. Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, Sugaya M, Kudo M, Kurano M, Yasuda T, Sato Y, Ohshima H, Mukai C, Ishii N (2010) Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men. J Sports Sci Med 9(3):452–458PubMedPubMedCentralGoogle Scholar
  3. Adams GR, Bamman MM (2012) Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2(4):2829–2870. doi:10.1002/cphy.c110066 PubMedGoogle Scholar
  4. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown LE, Weir JP (2001) ASEP procedures recommendation i: accurate assessment of muscular strength and power. Professionalization of exercise. Physiology 4(11)Google Scholar
  6. Camera DM, West DW, Burd NA, Phillips SM, Garnham AP, Hawley JA, Coffey VG (2012) Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol (1985) 113(2):206–214. doi:10.1152/japplphysiol.00395.2012 CrossRefGoogle Scholar
  7. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20(1):190–192. doi:10.1096/fj.05-4809fje PubMedGoogle Scholar
  8. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA (2009) Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(5):R1441–R1451. doi:10.1152/ajpregu.00351.2009 CrossRefPubMedGoogle Scholar
  9. Conceicao MS, Chacon-Mikahil MP, Telles GD, Libardi CA, Junior EM, Vechin FC, Andrade AL, Gaspari AF, Brum PC, Cavaglieri CR, Serag S, Spiegelman BM, Hawley JA, Camera DM (2016) Attenuated PGC-1alpha isoforms following endurance exercise with blood flow restriction. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000000970 Google Scholar
  10. Fritzen AM, Madsen AB, Kleinert M, Treebak JT, Lundsgaard AM, Jensen TE, Richter EA, Wojtaszewski J, Kiens B, Frosig C (2016) Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. J Physiol 594(3):745–761. doi:10.1113/JP271405 CrossRefPubMedGoogle Scholar
  11. Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985) 108(5):1199–1209. doi:10.1152/japplphysiol.01266.2009 CrossRefGoogle Scholar
  12. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985) 103 (3):903–910. doi:10.1152/japplphysiol.00195.2007 CrossRefGoogle Scholar
  13. Goldfarb AH, Garten RS, Chee PD, Cho C, Reeves GV, Hollander DB, Thomas C, Aboudehen KS, Francois M, Kraemer RR (2008) Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol 104(5):813–819. doi:10.1007/s00421-008-0836-1 CrossRefPubMedGoogle Scholar
  14. Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB (2012) Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol (1985) 112(9):1520–1528. doi:10.1152/japplphysiol.01267.2011 CrossRefGoogle Scholar
  15. Gundermann DM, Walker DK, Reidy PT, Borack MS, Dickinson JM, Volpi E, Rasmussen BB (2014) Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. Am J Physiol Endocrinol Metab 306(10):E1198–E1204. doi:10.1152/ajpendo.00600.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gurtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, Kohn JE, Posch A (2013) Stain-Free technology as a normalization tool in western blot analysis. Anal Biochem 433(2):105–111. doi:10.1016/j.ab.2012.10.010 CrossRefPubMedGoogle Scholar
  17. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749. doi:10.1016/j.cell.2014.10.029 CrossRefPubMedGoogle Scholar
  18. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515. doi:10.1038/nature10758 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Holloszy JO (2011) Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 1(2):921–940. doi:10.1002/cphy.c100052 PubMedGoogle Scholar
  20. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. doi:10.1249/MSS.0b013e31818cb278 CrossRefPubMedGoogle Scholar
  21. Jamart C, Francaux M, Millet GY, Deldicque L, Frere D, Feasson L (2012) Modulation of autophagy and ubiquitin–proteasome pathways during ultra-endurance running. J Appl Physiol (1985) 112 (9):1529–1537. doi:10.1152/japplphysiol.00952.2011 CrossRefPubMedGoogle Scholar
  22. Jamart C, Naslain D, Gilson H, Francaux M (2013) Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab 305(8):E964–E974. doi:10.1152/ajpendo.00270.2013 CrossRefPubMedGoogle Scholar
  23. Jefferson LS, Fabian JR, Kimball SR (1999) Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol 31(1):191–200CrossRefPubMedGoogle Scholar
  24. Jemiolo B, Trappe S (2004) Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem Biophys Res Commun 320(3):1043–1050. doi:10.1016/j.bbrc.2004.05.223 CrossRefPubMedGoogle Scholar
  25. Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287(1):E1–E7. doi:10.1152/ajpendo.00430.2003 CrossRefPubMedGoogle Scholar
  26. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.1038/ncb2152 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim SH, Koh JH, Higashida K, Jung SR, Holloszy JO, Han DH (2015) PGC-1alpha mediates a rapid, exercise-induced downregulation of glycogenolysis in rat skeletal muscle. J Physiol 593(3):635–643. doi:10.1113/jphysiol.2014.283820 CrossRefPubMedGoogle Scholar
  28. Kimball SR (1999) Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 31(1):25–29CrossRefPubMedGoogle Scholar
  29. Kramer HF, Goodyear LJ (2007) Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol (1985) 103(1):388–395. doi:10.1152/japplphysiol.00085.2007 CrossRefGoogle Scholar
  30. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, Fernandes Ada R, Tricoli V (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44(3):406–412. doi:10.1249/MSS.0b013e318233b4bc CrossRefPubMedGoogle Scholar
  31. Liang J, Xu ZX, Ding Z, Lu Y, Yu Q, Werle KD, Zhou G, Park YY, Peng G, Gambello MJ, Mills GB (2015) Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 6:7926. doi:10.1038/ncomms8926 CrossRefPubMedGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  33. Manini TM, Vincent KR, Leeuwenburgh CL, Lees HA, Kavazis AN, Borst SE, Clark BC (2011) Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol (Oxf) 201(2):255–263. doi:10.1111/j.1748-1716.2010.02172.x CrossRefGoogle Scholar
  34. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515. doi:10.1016/j.cmet.2009.10.008 CrossRefPubMedGoogle Scholar
  35. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40. doi:10.1146/annurev.nutr.27.061406.093749 CrossRefPubMedGoogle Scholar
  36. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. doi:10.1146/annurev-cellbio-092910-154005 CrossRefPubMedGoogle Scholar
  37. Moller AB, Vendelbo MH, Christensen B, Clasen BF, Bak AM, Jorgensen JO, Moller N, Jessen N (2015) Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. J Appl Physiol (1985) jap 01116: 02014. doi:10.1152/japplphysiol.01116.2014 Google Scholar
  38. Nakamura Y, Kitamura N, Shinogi D, Yoshida M, Goda O, Murai R, Kamino H, Arakawa H (2012) BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PLoS One 7(1):e30767. doi:10.1371/journal.pone.0030767 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298. doi:10.1371/journal.pbio.1000298 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol (1985) 96(1):189–194. doi:10.1152/japplphysiol.00765.2003 CrossRefGoogle Scholar
  41. Norrbom J, Sallstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1alpha-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301(6):E1092–E1098. doi:10.1152/ajpendo.00119.2011 CrossRefPubMedGoogle Scholar
  42. Ozaki H, Kakigi R, Kobayashi H, Loenneke JP, Abe T, Naito H (2014) Effects of walking combined with restricted leg blood flow on mTOR and MAPK signalling in young men. Acta Physiol (Oxf) 211(1):97–106. doi:10.1111/apha.12243 CrossRefGoogle Scholar
  43. Plomp PJ, Wolvetang EJ, Groen AK, Meijer AJ, Gordon PB, Seglen PO (1987) Energy dependence of autophagic protein degradation in isolated rat hepatocytes. Eur J Biochem 164(1):197–203CrossRefPubMedGoogle Scholar
  44. Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, Chi JT, Yan Z (2009) p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 4(11):e7934. doi:10.1371/journal.pone.0007934 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Qiao S, Dennis M, Song X, Vadysirisack DD, Salunke D, Nash Z, Yang Z, Liesa M, Yoshioka J, Matsuzawa S, Shirihai OS, Lee RT, Reed JC, Ellisen LW (2015) A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun 6:7014. doi:10.1038/ncomms8014 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scharf M, Neef S, Freund R, Geers-Knorr C, Franz-Wachtel M, Brandis A, Krone D, Schneider H, Groos S, Menon MB, Chang KC, Kraft T, Meissner JD, Boheler KR, Maier LS, Gaestel M, Scheibe RJ (2013) Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol 33(13):2586–2602. doi:10.1128/MCB.01692-12 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schwalm C, Jamart C, Benoit N, Naslain D, Premont C, Prevet J, Van Thienen R, Deldicque L, Francaux M (2015) Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J. doi:10.1096/fj.14-267187 PubMedGoogle Scholar
  48. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ (2015) Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med 45(3):313–325. doi:10.1007/s40279-014-0288-1 CrossRefPubMedGoogle Scholar
  49. Sin J, Andres AM, Taylor DJ, Weston T, Hiraumi Y, Stotland A, Kim BJ, Huang C, Doran KS, Gottlieb RA (2015) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. doi:10.1080/15548627.2015.1115172 PubMedCentralGoogle Scholar
  50. Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab 13(5):495–504. doi:10.1016/j.cmet.2011.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Slysz J, Stultz J, Burr JF (2015) The efficacy of blood flow restricted exercise: a systematic review and meta-analysis. J Sci Med Sport. doi:10.1016/j.jsams.2015.09.005 PubMedGoogle Scholar
  52. Smiles WJ, Areta JL, Coffey VG, Phillips SM, Moore DR, Stellingwerff T, Burke LM, Hawley JA, Camera DM (2015) Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Regul Integr Comp Physiol Ajpregu 00413:02014. doi:10.1152/ajpregu.00413.2014 Google Scholar
  53. Smiles WJ, Hawley JA, Camera DM (2016) Effects of skeletal muscle energy availability on protein turnover responses to exercise. J Exp Biol 219(Pt 2):214–225. doi:10.1242/jeb.125104 Google Scholar
  54. Tachtsis B, Smiles W, Lane S, Hawley J, Camera DM (2016) Acute endurance exercises induces nuclear p53 abundance in human skeletal muscle. Front Physiol 7:144CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tanida I, Waguri S (2010) Measurement of autophagy in cells and tissues. Methods Mol Biol 648:193–214. doi:10.1007/978-1-60761-756-3_13 CrossRefPubMedGoogle Scholar
  56. Vainshtein A, Hood DA (2016) The regulation of autophagy during exercise in skeletal muscle. J Appl Physiol (1985) 120(6):664–673. doi:10.1152/japplphysiol.00550.2015 CrossRefGoogle Scholar
  57. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107(1):378–383. doi:10.1073/pnas.0911187107 CrossRefPubMedGoogle Scholar
  58. Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP (2005) PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25(24):10684–10694. doi:10.1128/MCB.25.24.10684-10694.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, Hancock CR, Lehman JJ, Huss JM, McClain DA, Holloszy JO, Kelly DP (2007) A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem 282(50):36642–36651. doi:10.1074/jbc.M707006200 CrossRefPubMedGoogle Scholar
  60. Yu X, Long YC (2015) Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response. FASEB J 29(2):394–407. doi:10.1096/fj.14-252841 CrossRefPubMedGoogle Scholar
  61. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903. doi:10.1074/jbc.M800102200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • William J. Smiles
    • 1
  • Miguel S. Conceição
    • 2
  • Guilherme D. Telles
    • 2
  • Mara P. T. Chacon-Mikahil
    • 2
  • Cláudia R. Cavaglieri
    • 2
  • Felipe C. Vechin
    • 3
  • Cleiton A. Libardi
    • 4
  • John A. Hawley
    • 1
    • 5
  • Donny M. Camera
    • 1
  1. 1.Mary MacKillop Institute for Health ResearchCentre for Exercise and Nutrition, Australian Catholic UniversityMelbourneAustralia
  2. 2.Faculty of Physical EducationUniversity of CampinasCampinasBrazil
  3. 3.School of Physical Education and SportUniversity of São PauloSão PauloBrazil
  4. 4.Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical EducationFederal University of São CarlosSão CarlosBrazil
  5. 5.Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations