Skip to main content
Log in

Aerobic fitness impacts sympathoadrenal axis responses to concurrent challenges

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The combination of mental and physical challenges can elicit exacerbated cardiorespiratory (CR) and catecholamine responses above that of a single challenge alone.

Purpose

This study examined the effects of a combination of acute mental challenges and physical stress on cardiorespiratory and catecholamine responses.

Method

Eight below-average fitness (LF VO2max = 36.58 ± 3.36 ml−1 kg−1 min−1) and eight above-average fitness (HF VO2max = 51.18 ± 2.09 ml−1 kg−1 min−1) participants completed an exercise-alone condition (EAC) session consisting of moderate-intensity cycling at 60% VO2max for 37 min, and a dual-challenge condition (DCC) that included concurrent participation in mental challenges while cycling.

Result

The DCC resulted in increases in perceived workload, CR, epinephrine, and norepinephrine responses overall. HF participants had greater absolute CR and catecholamine responses compared to LF participants and quicker HR recovery after the dual challenge.

Conclusion

These findings demonstrate that cardiorespiratory fitness does impact the effect of concurrent stressors on CR and catecholamine responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AUC:

Area-under-the-curve

CR:

Cardiorespiratory

EPI:

Epinephrine

DCC:

Dual-challenge condition

EAC:

Exercise-alone condition

HR:

Heart rate

HF:

Higher-fitness

LF:

Lower-fitness

NE:

Norepinephrine

SA:

Sympathoadrenal axis

References

  • Acevedo EO, Dzewaltowski DA, Kubitz KA, Kraemer RR (1999) Effects of a proposed challenge on effort sense and cardiorespiratory responses during exercise. Med Sci Sports Exerc 31:1460–1465

    Article  CAS  PubMed  Google Scholar 

  • Acevedo EO, Webb HE, Weldy ML, Fabianke EC, Orndorff GR, Starks MA (2006) Cardiorespiratory responses of hi fit and low fit subjects to mental challenge during exercise. Int J Sports Med 27:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Baden DA, McLean TL, Tucker R, Noakes TD, St Clair Gibson A (2005) Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br J Sports Med 39:742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotherhood JR, Budd GM, Hendrie AL, Jeffery SE, Beasley FA, Costin BP, Zhien W, Baker MM, Cheney NP, Dawson MP (1997) Project Aquarius. 3. Effects of work rate on the productivity, energy expenditure, and physiological responses of men building fireline with a rakehoe in dry eucalypt forest. Int J Wildl Fire 7:87–98

    Article  Google Scholar 

  • Claytor RP (1991) Stress reactivity: hemodynamic adjustments in trained and untrained humans. Med Sci Sports Exerc 23:873–881

    Article  CAS  PubMed  Google Scholar 

  • Crews DJ, Landers DM (1987) A meta-analytic review of aerobic fitness and reactivity to psychosocial stressors. Med Sci Sports Exerc 19:S114–S120

    Article  CAS  PubMed  Google Scholar 

  • Dayas CV, Buller KM, Crane JW, Xu Y, Day TA (2001) Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • de Geus EJ, van Doornen LJ (1993) The effects of fitness training on the physiological stress response. Work Stress 7:141–159

    Article  Google Scholar 

  • de Geus EJ, van Doornen LJ, Orlebeke JF (1993) Regular exercise and aerobic fitness in relation to psychological make-up and physiological stress reactivity. Psychosom Med 55:347–363

    Article  PubMed  Google Scholar 

  • Delistraty DA, Greene WA, Carlberg KA, Raver KK (1991) Use of graded exercise to evaluate physiological hyperreactivity to mental stress. Med Sci Sports Exerc 23:476–481

    Article  CAS  PubMed  Google Scholar 

  • Delistraty DA, Greene WA, Carlberg KA, Raver KK (1992) Cardiovascular reactivity in Type A and B males to mental arithmetic and aerobic exercise at an equivalent oxygen uptake. Psychophysiology 29:264–271

    Article  CAS  PubMed  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248

    CAS  PubMed  Google Scholar 

  • Hamer M, Steptoe A (2007) Association between physical fitness, parasympathetic control, and proinflammatory responses to mental stress. Psychosom Med 69:660–666

    Article  PubMed  Google Scholar 

  • Hatfield BD, Spalding TW, Santa Maria DL, Porges SW, Potts JT, Byrne EA, Brody EB, Mahon AD (1998) Respiratory sinus arrhythmia during exercise in aerobically trained and untrained men. Med Sci Sports Exerc 30:206–214

    Article  CAS  PubMed  Google Scholar 

  • Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Webb HE, Evans RK, McCleod KA, Tangsilsat SE, Kamimori GH, Acevedo EO (2010a) Psychological stress during exercise: immunoendocrine and oxidative responses. Exp Biol Med (Maywood) 235:1498–1504

    Article  CAS  Google Scholar 

  • Huang CJ, Webb HE, Garten RS, Kamimori GH, Acevedo EO (2010b) Psychological stress during exercise: lymphocyte subset redistribution in firefighters. Physiol Behav 101:320–326

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Webb HE, Garten RS, Kamimori GH, Evans RK, Acevedo EO (2010c) Stress hormones and immunological responses to a dual challenge in professional firefighters. Int J Psychophysiol 75:312–318

    Article  PubMed  Google Scholar 

  • Jackson EM, Dishman RK (2006) Cardiorespiratory fitness and laboratory stress: a meta-regression analysis. Psychophysiology 43:57–72

    Article  PubMed  Google Scholar 

  • Kaufman MP, Hayes SG (2002) The exercise pressor reflex. Clin Auton Res 12:429–439

    Article  PubMed  Google Scholar 

  • Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, Chrousos GP (2005) Exercise and the stress system. Hormones (Athens) 4:73–89

    Google Scholar 

  • Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E (2015) Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22:6–19

    Article  CAS  PubMed  Google Scholar 

  • Pescatello LS (ed) (2013) ACSM’s guidelines for exercise testing and prescription. Wolters Kluwer, Philadelphia

    Google Scholar 

  • Rimmele U, Zellweger BC, Marti B, Seiler R, Mohiyeddini C, Ehlert U, Heinrichs M (2007) Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology 32:627–635

    Article  CAS  PubMed  Google Scholar 

  • Roth DL, Bachtler SD, Fillingim RB (1990) Acute emotional and cardiovascular effects of stressful mental work during aerobic exercise. Psychophysiology 27:694–701

    Article  CAS  PubMed  Google Scholar 

  • Rousselle JG, Blascovich J, Kelsey RM (1995) Cardiorespiratory response under combined psychological and exercise stress. Int J Psychophysiol 20:49–58

    Article  CAS  PubMed  Google Scholar 

  • Schuler JL, O’Brien WH (1997) Cardiovascular recovery from stress and hypertension risk factors: a meta-analytic review. Psychophysiology 34:649–659

    Article  CAS  PubMed  Google Scholar 

  • Smeets T (2010) Autonomic and hypothalamic-pituitary-adrenal stress resilience: impact of cardiac vagal tone. Biol Psychol 84:290–295

    Article  PubMed  Google Scholar 

  • Smith SA, Mitchell JH, Garry MG (2006) The mammalian exercise pressor reflex in health and disease. Exp Physiol 91:89–102

    Article  PubMed  Google Scholar 

  • Sothmann MS, Hart BA, Horn TS (1991) Plasma catecholamine response to acute psychological stress in humans: relation to aerobic fitness and exercise training. Med Sci Sports Exerc 23:860–867

    CAS  PubMed  Google Scholar 

  • Sothmann MS, Buckworth J, Claytor RP, Cox RH, White-Welkley JE, Dishman RK (1996) Exercise training and the cross-stressor adaptation hypothesis. Exerc Sport Sci Rev 24:267–287

    Article  CAS  PubMed  Google Scholar 

  • Spalding TW, Jeffers LS, Porges SW, Hatfield BD (2000) Vagal and cardiac reactivity to psychological stressors in trained and untrained men. Med Sci Sports Exerc 32:581–591

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Péronnet F, Gauvin L, Furedy JJ (1994) Mental challenge elicits “additional” increases in heart rate during low and moderate intensity cycling. Int J Psychophysiol 17:197–204

    Article  CAS  PubMed  Google Scholar 

  • Webb HE, Weldy ML, Fabianke-Kadue EC, Orndorff GR, Kamimori GH, Acevedo EO (2008) Psychological stress during exercise: cardiorespiratory and hormonal responses. Eur J Appl Physiol 104:973–981

    Article  PubMed  Google Scholar 

  • Webb HE, McMinn DR, Garten RS, Beckman JL, Kamimori GH, Acevedo EO (2010) Cardiorespiratory responses of firefighters to a computerized fire strategies and tactics drill during physical activity. Appl Ergon 41:376–381

    Article  PubMed  Google Scholar 

  • Webb HE, Fabianke-Kadue EC, Kraemer RR, Kamimori GH, Castracane VD, Acevedo EO (2011a) Stress reactivity to repeated low-level challenges: a pilot study. Appl Psychophysiol Biofeedback 36:243–250

    Article  PubMed  Google Scholar 

  • Webb HE, Garten RS, McMinn DR, Beckman JL, Kamimori GH, Acevedo EO (2011b) Stress hormones and vascular function in firefighters during concurrent challenges. Biol Psychol 87:152–160

    Article  PubMed  Google Scholar 

  • Webb HE, Rosalky DS, Tangsilsat SE, McLeod KA, Acevedo EO, Wax B (2013) Aerobic fitness affects cortisol responses to concurrent challenges. Med Sci Sports Exerc 45:379–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Supatchara Tangsilat and Kelly McCleod for their assistance in data collection with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather E. Webb.

Ethics declarations

No external funding was received to conduct this study.

Conflict of interest

The authors declare no conflicts of interest.

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, H.E., Rosalky, D.A., McAllister, M.J. et al. Aerobic fitness impacts sympathoadrenal axis responses to concurrent challenges. Eur J Appl Physiol 117, 301–313 (2017). https://doi.org/10.1007/s00421-016-3519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3519-3

Keywords

Navigation