Skip to main content

Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial



We developed a short-interval, low-intensity, slow-jogging (SJ) program consisting of sets of 1 min of SJ at walking speed and 1 min of walking. We aimed to examine the effects of an easily performed SJ program on skeletal muscle, fat infiltration, and fitness in older adults.


A total of 81 community-dwelling, independent, older adults (70.8 ± 4.0 years) were randomly assigned to the SJ or control group. The SJ group participants were encouraged to perform 90 min of SJ at their anaerobic threshold (AT) intensity and 90 min of walking intermittently per week. Aerobic capacity at the AT and sit-to-stand (STS) scores were measured. Intracellular water (ICW) in the legs was assessed by segmental multi-frequency bioelectrical impedance analysis. Subcutaneous (SAT) and intermuscular (IMAT) adipose tissue and muscle cross-sectional area (CSA) were measured at the mid-thigh using computed tomography.


A total of 75 participants (37 SJ group, 38 controls) completed the 12-week intervention. The AT and STS improved in the SJ group compared with the controls (AT 15.7 vs. 4.9 %, p < 0.01; STS 12.9 vs. 4.5 %, p < 0.05). ICW in the upper leg increased only in the SJ group (9.7 %, p < 0.05). SAT and IMAT were significantly decreased only in the SJ group (p < 0.01).


The 12-week SJ program was easily performed by older adults with low skeletal muscle mass, improved aerobic capacity, muscle function, and muscle composition in older adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2



Amplitude of the first heart sound


Analysis of variance


Anaerobic threshold


Cross-sectional area


Computed tomography


Double product breakpoint




Heart rate


Intracellular water


Intermuscular adipose tissue


Low-density muscle area


Lactate threshold


Metabolic equivalents


Magnetic resonance imaging


Normal-density muscle area


Rate of perceived exertion


Subcutaneous adipose tissue


Slow jogging


Segmental multi-frequency bioelectrical impedance analysis


Skeletal muscle index



\( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) :

Maximum oxygen uptake

\( \dot{V}{\text{O}}_{{ 2 {\text{peak}}}} \) :

Peak oxygen uptake


Walk−run transition


  1. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Skeletal muscle adaptations to endurance training in 60- to 70-year-old men and women. J Appl Physiol 72(5):1780–1786

    CAS  PubMed  Google Scholar 

  2. Farinatti PT, Monteiro WD (2010) Walk-run transition in young and older adults: with special reference to the cardio-respiratory responses. Eur J Appl Physiol 109(3):379–388. doi:10.1007/s00421-010-1366-1

    CAS  Article  PubMed  Google Scholar 

  3. Gazendam MG, Hof AL (2007) Averaged EMG profiles in jogging and running at different speeds. Gait Posture 25(4):604–614. doi:10.1016/j.gaitpost.2006.06.013

    Article  PubMed  Google Scholar 

  4. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89(1):104–110

    CAS  PubMed  Google Scholar 

  5. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol 90(6):2157–2165

    CAS  PubMed  Google Scholar 

  6. Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2009) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297(5):R1452–R1459. doi:10.1152/ajpregu.00354.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2012) Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol 113(9):1495–1504. doi:10.1152/japplphysiol.00786.2012

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hreljac A (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc 25(10):1158–1162

    CAS  Article  PubMed  Google Scholar 

  9. Ikenaga M, Yamada Y, Takeda N, Kimura M, Higaki Y, Tanaka H, Kiyonaga A, Group NS (2014) Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J Phys Fitness Sports Med 3(1):147–154

    Article  Google Scholar 

  10. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89(2):465–471

    CAS  PubMed  Google Scholar 

  11. Kimura M, Mizuta C, Yamada Y, Okayama Y, Nakamura E (2012) Constructing an index of physical fitness age for Japanese elderly based on 7-year longitudinal data: sex differences in estimated physical fitness age. Age (Dordr) 34(1):203–214. doi:10.1007/s11357-011-9225-5

    Article  Google Scholar 

  12. Kitajima Y, Sasaki Y, Tanaka H (2014) Similar perceived exertion during slow jogging at walking speed. J Running Sci (Japanese) 25(1):19–27

    Google Scholar 

  13. Kiyonaga A, Arakawa K, Tanaka H, Shindo M (1985) Blood pressure and hormonal responses to aerobic exercise. Hypertension 7(1):125–131

    CAS  Article  PubMed  Google Scholar 

  14. Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91(2):235–243. doi:10.1079/BJN20031033

    CAS  Article  PubMed  Google Scholar 

  15. Kushner RF, Gudivaka R, Schoeller DA (1996) Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr 64(3 Suppl):423S–427S

    CAS  PubMed  Google Scholar 

  16. Liu CJ, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. The Cochrane database of systematic reviews (3):CD002759. doi:10.1002/14651858.CD002759.pub2

  17. Lovell DI, Cuneo R, Gass GC (2010) Can aerobic training improve muscle strength and power in older men? J Aging Phys Act 18(1):14–26

    Article  PubMed  Google Scholar 

  18. Miyashita M, Burns SF, Stensel DJ (2013) An update on accumulating exercise and postprandial lipaemia: translating theory into practice. J Prevent Med Publ Health Yebang Uihakhoe chi 46:S3–S11. doi:10.3961/jpmph.2013.46.S.S3

    Article  Google Scholar 

  19. Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91(1):386–394

    CAS  PubMed  Google Scholar 

  20. Mori Y, Ayabe M, Yahiro T, Tobina T, Kiyonaga A, Shindo M, Yamada T, Tanaka H (2006) The effects of home-based bench step exercise on aerobic capacity, lower extremity power and static balance in older dults. Int J Sport Health Sci 4:570–576

    Article  Google Scholar 

  21. Nemoto K, Gen-no H, Masuki S, Okazaki K, Nose H (2007) Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin Proc 82(7):803–811

    Article  PubMed  Google Scholar 

  22. Nishida Y, Higaki Y, Tokuyama K, Fujimi K, Kiyonaga A, Shindo M, Sato Y, Tanaka H (2001) Effect of mild exercise training on glucose effectiveness in healthy men. Diabetes Care 24(6):1008–1013

    CAS  Article  PubMed  Google Scholar 

  23. Sakamoto M, Higaki Y, Nishida Y, Kiyonaga A, Shindo M, Tokuyama K, Tanaka H (1999) Influence of mild exercise at the lactate threshold on glucose effectiveness. J Appl Physiol 87(6):2305–2310

    CAS  PubMed  Google Scholar 

  24. Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB (2015) Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol 65(5):411–419. doi:10.1016/j.jacc.2014.11.023

    Article  PubMed  Google Scholar 

  25. Sipila S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78(1):334–340

    CAS  PubMed  Google Scholar 

  26. Slinde F, Bark A, Jansson J, Rossander-Hulthen L (2003) Bioelectrical impedance variation in healthy subjects during 12 h in the supine position. Clin Nutr 22(2):153–157

    CAS  Article  PubMed  Google Scholar 

  27. Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, Sasaki J, Tanaka H, Shindo M (1999) Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metab Clin Exp 48(8):984–988

    CAS  Article  PubMed  Google Scholar 

  28. Tanaka H, Matsuda T, Tobina T, Yamada Y, Yamagishi T, Sakai H, Obara S, Higaki Y, Kiyonaga A, Brubaker PH (2013) Product of heart rate and first heart sound amplitude as an index of myocardial metabolic stress during graded exercise. Circ J 77(11):2736–2741

    Article  PubMed  Google Scholar 

  29. Tobina T, Yoshioka K, Hirata A, Mori S, Kiyonaga A, Tanaka H (2011) Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness 51(4):683–688

    CAS  PubMed  Google Scholar 

  30. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333

    Article  PubMed  Google Scholar 

  31. Yamada Y, Schoeller DA, Nakamura E, Morimoto T, Kimura M, Oda S (2010) Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 65(5):510–516. doi:10.1093/gerona/glq001

    Article  PubMed  Google Scholar 

  32. Yamada Y, Watanabe Y, Ikenaga M, Yokoyama K, Yoshida T, Morimoto T, Kimura M (2013) Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly. J Appl Physiol 115(6):812–818. doi:10.1152/japplphysiol.00010.2013

    Article  PubMed  Google Scholar 

  33. Yamada Y, Ikenaga M, Takeda N, Morimura K, Miyoshi N, Kiyonaga A, Kimura M, Higaki Y, Tanaka H, Nakagawa S (2014a) Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J Appl Physiol 116(2):176–182. doi:10.1152/japplphysiol.00772.2013

    Article  PubMed  Google Scholar 

  34. Yamada Y, Matsuda K, Bjorkman MP, Kimura M (2014b) Application of segmental bioelectrical impedance spectroscopy to the assessment of skeletal muscle cell mass in elderly men. Geriatr Gerontol Int 14(Suppl 1):129–134. doi:10.1111/ggi.12212

    Article  PubMed  Google Scholar 

  35. Yaskolka Meir A, Shelef I, Schwarzfuchs D, Gepner Y, Tene L, Zelicha H, Tsaban G, Bilitzky A, Komy O, Cohen N, Bril N, Rein M, Serfaty D, Kenigsbuch S, Chassidim Y, Zeller L, Ceglarek U, Stumvoll M, Bluher M, Thiery J, Stampfer MJ, Rudich A, Shai I (2016) Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial. J Appl Physiol 121(2):518–527. doi:10.1152/japplphysiol.00309.2016

    Article  PubMed  Google Scholar 

  36. Yoshimura E, Kumahara H, Tobina T, Ayabe M, Matono S, Anzai K, Higaki Y, Kiyonaga A, Tanaka H (2011) A 12-week aerobic exercise program without energy restriction improves intrahepatic fat, liver function and atherosclerosis-related factors. Obes Res Clin Pract 5(3):e169–e266. doi:10.1016/j.orcp.2011.03.003

    Article  PubMed  Google Scholar 

  37. Yoshimura E, Kumahara H, Tobina T, Matsuda T, Watabe K, Matono S, Ayabe M, Kiyonaga A, Anzai K, Higaki Y, Tanaka H (2014) Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity. Obesity Facts 7(1):26–35. doi:10.1159/000358576

    Article  PubMed  Google Scholar 

Download references


This study was supported by JSPS KAKENHI (Grant Number 25242065) and A Technology Scientific Research Budget Basic Research Grant (Grant Number A19200049) (Strategic Research Infrastructure) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology to the Fukuoka University Institute for Physical Activity supported this study. We thank the participants and the Nakagawa Town Hall staff whose participation made this intervention study possible and the technical staff in Fukuseikai Hospital for data acquisition of CT. We are also grateful to Magdalena Jackowska for her English support.

Author information




Corresponding author

Correspondence to Hiroaki Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikenaga, M., Yamada, Y., Kose, Y. et al. Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial. Eur J Appl Physiol 117, 7–15 (2017).

Download citation


  • Jogging
  • Randomized controlled trial
  • Aerobic capacity
  • Muscle hypertrophy
  • Muscle composition