Abstract
Purpose
We developed a short-interval, low-intensity, slow-jogging (SJ) program consisting of sets of 1 min of SJ at walking speed and 1 min of walking. We aimed to examine the effects of an easily performed SJ program on skeletal muscle, fat infiltration, and fitness in older adults.
Methods
A total of 81 community-dwelling, independent, older adults (70.8 ± 4.0 years) were randomly assigned to the SJ or control group. The SJ group participants were encouraged to perform 90 min of SJ at their anaerobic threshold (AT) intensity and 90 min of walking intermittently per week. Aerobic capacity at the AT and sit-to-stand (STS) scores were measured. Intracellular water (ICW) in the legs was assessed by segmental multi-frequency bioelectrical impedance analysis. Subcutaneous (SAT) and intermuscular (IMAT) adipose tissue and muscle cross-sectional area (CSA) were measured at the mid-thigh using computed tomography.
Results
A total of 75 participants (37 SJ group, 38 controls) completed the 12-week intervention. The AT and STS improved in the SJ group compared with the controls (AT 15.7 vs. 4.9 %, p < 0.01; STS 12.9 vs. 4.5 %, p < 0.05). ICW in the upper leg increased only in the SJ group (9.7 %, p < 0.05). SAT and IMAT were significantly decreased only in the SJ group (p < 0.01).
Conclusion
The 12-week SJ program was easily performed by older adults with low skeletal muscle mass, improved aerobic capacity, muscle function, and muscle composition in older adults.
This is a preview of subscription content,
to check access.

Abbreviations
- AHS1:
-
Amplitude of the first heart sound
- ANOVA:
-
Analysis of variance
- AT:
-
Anaerobic threshold
- CSA:
-
Cross-sectional area
- CT:
-
Computed tomography
- DPBP:
-
Double product breakpoint
- EMG:
-
Electromyography
- HR:
-
Heart rate
- ICW:
-
Intracellular water
- IMAT:
-
Intermuscular adipose tissue
- LDMA:
-
Low-density muscle area
- LT:
-
Lactate threshold
- METs:
-
Metabolic equivalents
- MRI:
-
Magnetic resonance imaging
- NDMA:
-
Normal-density muscle area
- RPE:
-
Rate of perceived exertion
- SAT:
-
Subcutaneous adipose tissue
- SJ:
-
Slow jogging
- S-MFBIA:
-
Segmental multi-frequency bioelectrical impedance analysis
- SMI:
-
Skeletal muscle index
- STS:
-
Sit-to-stand
- \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) :
-
Maximum oxygen uptake
- \( \dot{V}{\text{O}}_{{ 2 {\text{peak}}}} \) :
-
Peak oxygen uptake
- WRT:
-
Walk−run transition
References
Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Skeletal muscle adaptations to endurance training in 60- to 70-year-old men and women. J Appl Physiol 72(5):1780–1786
Farinatti PT, Monteiro WD (2010) Walk-run transition in young and older adults: with special reference to the cardio-respiratory responses. Eur J Appl Physiol 109(3):379–388. doi:10.1007/s00421-010-1366-1
Gazendam MG, Hof AL (2007) Averaged EMG profiles in jogging and running at different speeds. Gait Posture 25(4):604–614. doi:10.1016/j.gaitpost.2006.06.013
Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89(1):104–110
Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol 90(6):2157–2165
Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2009) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297(5):R1452–R1459. doi:10.1152/ajpregu.00354.2009
Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2012) Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol 113(9):1495–1504. doi:10.1152/japplphysiol.00786.2012
Hreljac A (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc 25(10):1158–1162
Ikenaga M, Yamada Y, Takeda N, Kimura M, Higaki Y, Tanaka H, Kiyonaga A, Group NS (2014) Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J Phys Fitness Sports Med 3(1):147–154
Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89(2):465–471
Kimura M, Mizuta C, Yamada Y, Okayama Y, Nakamura E (2012) Constructing an index of physical fitness age for Japanese elderly based on 7-year longitudinal data: sex differences in estimated physical fitness age. Age (Dordr) 34(1):203–214. doi:10.1007/s11357-011-9225-5
Kitajima Y, Sasaki Y, Tanaka H (2014) Similar perceived exertion during slow jogging at walking speed. J Running Sci (Japanese) 25(1):19–27
Kiyonaga A, Arakawa K, Tanaka H, Shindo M (1985) Blood pressure and hormonal responses to aerobic exercise. Hypertension 7(1):125–131
Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91(2):235–243. doi:10.1079/BJN20031033
Kushner RF, Gudivaka R, Schoeller DA (1996) Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr 64(3 Suppl):423S–427S
Liu CJ, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. The Cochrane database of systematic reviews (3):CD002759. doi:10.1002/14651858.CD002759.pub2
Lovell DI, Cuneo R, Gass GC (2010) Can aerobic training improve muscle strength and power in older men? J Aging Phys Act 18(1):14–26
Miyashita M, Burns SF, Stensel DJ (2013) An update on accumulating exercise and postprandial lipaemia: translating theory into practice. J Prevent Med Publ Health Yebang Uihakhoe chi 46:S3–S11. doi:10.3961/jpmph.2013.46.S.S3
Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91(1):386–394
Mori Y, Ayabe M, Yahiro T, Tobina T, Kiyonaga A, Shindo M, Yamada T, Tanaka H (2006) The effects of home-based bench step exercise on aerobic capacity, lower extremity power and static balance in older dults. Int J Sport Health Sci 4:570–576
Nemoto K, Gen-no H, Masuki S, Okazaki K, Nose H (2007) Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin Proc 82(7):803–811
Nishida Y, Higaki Y, Tokuyama K, Fujimi K, Kiyonaga A, Shindo M, Sato Y, Tanaka H (2001) Effect of mild exercise training on glucose effectiveness in healthy men. Diabetes Care 24(6):1008–1013
Sakamoto M, Higaki Y, Nishida Y, Kiyonaga A, Shindo M, Tokuyama K, Tanaka H (1999) Influence of mild exercise at the lactate threshold on glucose effectiveness. J Appl Physiol 87(6):2305–2310
Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB (2015) Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol 65(5):411–419. doi:10.1016/j.jacc.2014.11.023
Sipila S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78(1):334–340
Slinde F, Bark A, Jansson J, Rossander-Hulthen L (2003) Bioelectrical impedance variation in healthy subjects during 12 h in the supine position. Clin Nutr 22(2):153–157
Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, Sasaki J, Tanaka H, Shindo M (1999) Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metab Clin Exp 48(8):984–988
Tanaka H, Matsuda T, Tobina T, Yamada Y, Yamagishi T, Sakai H, Obara S, Higaki Y, Kiyonaga A, Brubaker PH (2013) Product of heart rate and first heart sound amplitude as an index of myocardial metabolic stress during graded exercise. Circ J 77(11):2736–2741
Tobina T, Yoshioka K, Hirata A, Mori S, Kiyonaga A, Tanaka H (2011) Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness 51(4):683–688
Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333
Yamada Y, Schoeller DA, Nakamura E, Morimoto T, Kimura M, Oda S (2010) Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 65(5):510–516. doi:10.1093/gerona/glq001
Yamada Y, Watanabe Y, Ikenaga M, Yokoyama K, Yoshida T, Morimoto T, Kimura M (2013) Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly. J Appl Physiol 115(6):812–818. doi:10.1152/japplphysiol.00010.2013
Yamada Y, Ikenaga M, Takeda N, Morimura K, Miyoshi N, Kiyonaga A, Kimura M, Higaki Y, Tanaka H, Nakagawa S (2014a) Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J Appl Physiol 116(2):176–182. doi:10.1152/japplphysiol.00772.2013
Yamada Y, Matsuda K, Bjorkman MP, Kimura M (2014b) Application of segmental bioelectrical impedance spectroscopy to the assessment of skeletal muscle cell mass in elderly men. Geriatr Gerontol Int 14(Suppl 1):129–134. doi:10.1111/ggi.12212
Yaskolka Meir A, Shelef I, Schwarzfuchs D, Gepner Y, Tene L, Zelicha H, Tsaban G, Bilitzky A, Komy O, Cohen N, Bril N, Rein M, Serfaty D, Kenigsbuch S, Chassidim Y, Zeller L, Ceglarek U, Stumvoll M, Bluher M, Thiery J, Stampfer MJ, Rudich A, Shai I (2016) Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial. J Appl Physiol 121(2):518–527. doi:10.1152/japplphysiol.00309.2016
Yoshimura E, Kumahara H, Tobina T, Ayabe M, Matono S, Anzai K, Higaki Y, Kiyonaga A, Tanaka H (2011) A 12-week aerobic exercise program without energy restriction improves intrahepatic fat, liver function and atherosclerosis-related factors. Obes Res Clin Pract 5(3):e169–e266. doi:10.1016/j.orcp.2011.03.003
Yoshimura E, Kumahara H, Tobina T, Matsuda T, Watabe K, Matono S, Ayabe M, Kiyonaga A, Anzai K, Higaki Y, Tanaka H (2014) Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity. Obesity Facts 7(1):26–35. doi:10.1159/000358576
Acknowledgments
This study was supported by JSPS KAKENHI (Grant Number 25242065) and A Technology Scientific Research Budget Basic Research Grant (Grant Number A19200049) (Strategic Research Infrastructure) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology to the Fukuoka University Institute for Physical Activity supported this study. We thank the participants and the Nakagawa Town Hall staff whose participation made this intervention study possible and the technical staff in Fukuseikai Hospital for data acquisition of CT. We are also grateful to Magdalena Jackowska for her English support.
Author information
Authors and Affiliations
Consortia
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Jean-René Lacour.
Rights and permissions
About this article
Cite this article
Ikenaga, M., Yamada, Y., Kose, Y. et al. Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial. Eur J Appl Physiol 117, 7–15 (2017). https://doi.org/10.1007/s00421-016-3493-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00421-016-3493-9