Skip to main content

Advertisement

Log in

Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to investigate the effects of low-intensity resistance training with blood flow restriction (BFR resistance training) on vascular endothelial function and peripheral blood circulation.

Methods

Forty healthy elderly volunteers aged 71 ± 4 years were divided into two training groups. Twenty subjects performed BFR resistance training (BFR group), and the remaining 20 performed ordinary resistance training without BFR. Resistance training was performed at 20 % of each estimated one-repetition maximum for 4 weeks. We measured lactate (Lac), norepinephrine (NE), vascular endothelial growth factor (VEGF) and growth hormone (GH) before and after the initial resistance training. The reactive hyperemia index (RHI), von Willebrand factor (vWF) and transcutaneous oxygen pressure in the foot (Foot-tcPO2) were assessed before and after the 4-week resistance training period.

Results

Lac, NE, VEGF and GH increased significantly from 8.2 ± 3.6 mg/dL, 619.5 ± 243.7 pg/mL, 43.3 ± 15.9 pg/mL and 0.9 ± 0.7 ng/mL to 49.2 ± 16.1 mg/dL, 960.2 ± 373.7 pg/mL, 61.6 ± 19.5 pg/mL and 3.1 ± 1.3 ng/mL, respectively, in the BFR group (each P < 0.01). RHI and Foot-tcPO2 increased significantly from 1.8 ± 0.2 and 62.4 ± 5.3 mmHg to 2.1 ± 0.3 and 68.9 ± 5.8 mmHg, respectively, in the BFR group (each P < 0.01). VWF decreased significantly from 175.7 ± 20.3 to 156.3 ± 38.1 % in the BFR group (P < 0.05).

Conclusions

BFR resistance training improved vascular endothelial function and peripheral blood circulation in healthy elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BFR:

Blood flow restriction

eNOS:

Endothelial nitric oxide synthase

EPI:

Epinephrine

GH:

Growth hormone

NE:

Norepinephrine

NO:

Nitric oxide

RHI:

Reactive hyperemia index

RM:

Repetition maximum

tcPO2 :

Transcutaneous oxygen pressure

TM:

Thrombomodulin

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

References

  • Abdul-Hameed U, Rangra P, Shareef MY, Hussain ME (2012) Reliability of 1-repetition maximum estimation for upper and lower body muscular strength measurement in untrained middle aged type 2 diabetic patients. Asian J Sports Med 3(4):267–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle. Kaatsu-walk training. J Appl Physiol 100(5):1460–1466. doi:10.1152/japplphysiol.01267.2005

    Article  CAS  PubMed  Google Scholar 

  • American College of Sports Medicine position stand (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708. doi:10.1249/MSS.0b013e3181915670

  • Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD (1996) Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81(1):355–361

    CAS  PubMed  Google Scholar 

  • Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY (2003) Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation 107(25):3141–3145. doi:10.1161/01.CIR.0000077912.12202.FC

    Article  CAS  PubMed  Google Scholar 

  • De Palo EF, Gatti R, Lancerin F, Cappellin E, Spinella P (2001) Correlations of growth hormone (GH) and insulin-like growth factor I (IGF-I): effects of exercise and abuse by athletes. Clin Chim Acta 305(1–2):1–17

    Article  PubMed  Google Scholar 

  • de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA (2008) Continuous hemodynamic response to maximal dynamic strength testing in older adults. Arch Phys Med Rehabil 89(2):343–350. doi:10.1016/j.apmr.2007.08.130

    Article  PubMed  Google Scholar 

  • Detmar M (2000) The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci 24(Suppl 1):S78–S84

    Article  CAS  PubMed  Google Scholar 

  • Downs ME, Hackney KJ, Martin D, Caine TL, Cunningham D, O’Connor DP, Ploutz-Snyder LL (2014) Acute vascular and cardiovascular responses to blood flow-restricted exercise. Med Sci Sports Exerc 46(8):1489–1497. doi:10.1249/MSS.0000000000000253

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103(3):903–910

    Article  CAS  PubMed  Google Scholar 

  • Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG (1994) Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(2):821–829

    CAS  PubMed  Google Scholar 

  • Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1):1–25. doi:10.1113/jphysiol.2004.068197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, Hellsten Y (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590(Pt 3):595–606. doi:10.1113/jphysiol.2011.216135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274(3 Pt 2):H1054–H1058

    CAS  PubMed  Google Scholar 

  • Hunt JE, Walton LA, Ferguson RA (2012) Brachial artery modifications to blood flow-restricted handgrip training and detraining. J Appl Physiol 112(6):956–961. doi:10.1152/japplphysiol.00905.2011

    Article  PubMed  Google Scholar 

  • Ishii H, Uchiyama H, Kazama M (1991) Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost 65(5):618–623

    CAS  PubMed  Google Scholar 

  • Ji JW, Mac Gabhann F, Popel AS (2007) Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol 293(6):H3740–H3749. doi:10.1152/ajpheart.00009.2007

    CAS  Google Scholar 

  • Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91(2):235–243. doi:10.1079/BJN20031033

    Article  CAS  PubMed  Google Scholar 

  • Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146(1):168–174. doi:10.1016/S0002-8703(03)00094-2

    Article  PubMed  Google Scholar 

  • Larkin KA, Macneil RG, Dirain M, Sandesara B, Manini TM, Buford TW (2012) Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc 44(11):2077–2083. doi:10.1249/MSS.0b013e3182625928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112(5):1849–1859. doi:10.1007/s00421-011-2167-x

    Article  PubMed  Google Scholar 

  • Matt B (1993) Strength testing—predicting a one-rep max from reps to fatigue. Journal of Physical Education, Recreation and Dance 64(1):88–90

    Article  Google Scholar 

  • McDonagh MJ, Davies CT (1984) Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol 52(2):139–155

    Article  CAS  Google Scholar 

  • Miyauchi T, Maeda S, Iemitsu M, Kobayashi T, Kumagai Y, Yamaguchi I, Matsuda M (2003) Exercise causes a tissue-specific change of NO production in the kidney and lung. J Appl Physiol 94(1):60–68. doi:10.1152/japplphysiol.00269.2002

    Article  CAS  PubMed  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol 64(6):552–556

    Article  CAS  Google Scholar 

  • Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. JACC 28(7):1652–1660. doi:10.1016/S0735-1097(96)00393-2

    Article  CAS  PubMed  Google Scholar 

  • Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, Ganz P (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101(2):545–548

    Article  CAS  PubMed  Google Scholar 

  • Ozaki H, Miyachi M, Nakajima T, Abe T (2011) Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults. Angiology 62(1):81–86. doi:10.1177/0003319710375942

    Article  PubMed  Google Scholar 

  • Patterson SD, Leggate M, Nimmo MA, Ferguson RA (2013) Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol 113(3):713–719. doi:10.1007/s00421-012-2479-5

    Article  CAS  PubMed  Google Scholar 

  • Pollock ML, Carroll JF, Graves JE, Leggett SH, Braith RW, Limacher M, Hagberg JM (1991) Injuries and adherence to walk/jog and resistance training programs in the elderly. Med Sci Sports Exerc 23(10):1194–1200

    Article  CAS  PubMed  Google Scholar 

  • Pollock ML, Franklin BA, Balady GJ et al (2000) AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 101(7):828–833

    Article  CAS  PubMed  Google Scholar 

  • Rozanski A, Qureshi E, Bauman M, Reed G, Pillar G, Diamond GA (2001) Peripheral arterial responses to treadmill exercise among healthy subjects and atherosclerotic patients. Circulation 103(16):2084–2089

    Article  CAS  PubMed  Google Scholar 

  • Schechtman KB, Ory MG, Frailty and Injuries: Cooperative Studies of Intervention T (2001) The effects of exercise on the quality of life of frail older adults: a preplanned meta-analysis of the FICSIT trials. Ann Behav Med 23(3):186–197

    Article  CAS  PubMed  Google Scholar 

  • Shaw CE, McCully KK, Posner JD (1995) Injuries during the one repetition maximum assessment in the elderly. J Cardiopulm Rehabil 15(4):283–287

    Article  CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845. doi:10.1038/359843a0

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CL, Longhurst JC (1989) Potentiation of the exercise pressor reflex by muscle ischemia. J Appl Physiol 66(3):1046–1053

    CAS  PubMed  Google Scholar 

  • Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT (2002) Exercise training for claudication. N Eng J Med 347(24):1941–1951. doi:10.1056/NEJMra021135

    Article  Google Scholar 

  • Strijdom H, Friedrich SO, Hattingh S, Chamane N, Lochner A (2009) Hypoxia-induced regulation of nitric oxide synthase in cardiac endothelial cells and myocytes and the role of the PI3-K/PKB pathway. Mol Cell Biochem 321(1–2):23–35. doi:10.1007/s11010-008-9906-2

    Article  CAS  PubMed  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Takahashi T, Omokawa M, Kinugawa S, Tsutsui H (2009) Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 106(4):1119–1124. doi:10.1152/japplphysiol.90368.2008

    Article  CAS  PubMed  Google Scholar 

  • Sutton JR, Jones NL, Toews CJ (1976) Growth hormone secretion in acid-base alterations at rest and during exercise. Clin Sci Mol Med 50(4):241–247

    CAS  PubMed  Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95(1):65–73. doi:10.1007/s00421-005-1389-1

    Article  CAS  PubMed  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000a) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88(1):61–65

    CAS  PubMed  Google Scholar 

  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000b) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88(6):2097–2106

    CAS  PubMed  Google Scholar 

  • Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65(3):550–563

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Tsikas D, Frolich JC, Borlak J (2003) Growth hormone induces eNOS expression and nitric oxide release in a cultured human endothelial cell line. FEBS Lett 555(3):567–571

    Article  CAS  PubMed  Google Scholar 

  • Victor RG, Bertocci LA, Pryor SL, Nunnally RL (1988) Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest 82(4):1301–1305. doi:10.1172/JCI113730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vona M, Codeluppi GM, Iannino T, Ferrari E, Bogousslavsky J, von Segesser LK (2009) Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation 119(12):1601–1608. doi:10.1161/CIRCULATIONAHA.108.821736

    Article  CAS  PubMed  Google Scholar 

  • Wickman A, Jonsdottir IH, Bergstrom G, Hedin L (2002) GH and IGF-I regulate the expression of endothelial nitric oxide synthase (eNOS) in cardiovascular tissues of hypophysectomized female rats. Eur J Eendocrinol 147(4):523–533

    Article  CAS  Google Scholar 

  • Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99(11):2625–2634. doi:10.1172/JCI119451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 26350585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Masuda.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, R., Hotta, K., Yamamoto, S. et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol 116, 749–757 (2016). https://doi.org/10.1007/s00421-016-3328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3328-8

Keywords

Navigation