Abstract
Purpose
Postprandial hyperglycemia and glycemic oscillations have been associated with increased oxidative stress. We sought to investigate the effect of two walking exercise protocols performed during lunchtime on glycemic control and oxidative stress in type 2 diabetic (T2D) patients.
Methods
Nine T2D patients participated in three randomized crossover trials; a control trial (Con), with participants having a standard lunch followed by their normal daily activities and two exercise trials (ContEx and Splitex). In ContEx, subjects performed 40 min of brisk walking 40 min after lunch, whereas in SplitEx the walking exercise was divided in two 20-min isoenergetic bouts, before and 40 min after meal. 24-h glycemic control was monitored by continuous glucose monitoring. 24-h urinary levels of 8-iso PGF2ɑ were measured as a marker of oxidative stress.
Results
SplitEx resulted in less time spent in moderate hyperglycemia after lunch vs ContEx (42.4 ± 38.7 % vs 68.2 ± 32.7 %, P = 0.04). ContEx reduced hyperglycemic time after breakfast consumed the morning after the exercise session (58.3 ± 29.6 Con vs 40.2 ± 33.4 % ContEx, P = 0.02). Compared with Con, 24-h urinary isoprostanes were decreased both in ContEx (−68 %, P = 0.02) and SplitEx (−63 %, P = 0.04).
Conclusions
Splitting an exercise session into two bouts, pre- and post-lunch, affects mainly the glycemic response to lunch, while a single-continuous isoenergetic session exerts its effect later in the 24-h period. Both exercise modalities effectively attenuate systemic oxidative stress with similar overall benefits.
Similar content being viewed by others
Abbreviations
- AUC:
-
Total area under the curve
- Con:
-
Control trial
- CGM:
-
Continous glucose monitoring
- CONGA:
-
Continuous overlapping net glycemic action
- ContEx:
-
Continous exercise
- HbA1c:
-
Glycated hemoglobin
- HRmax:
-
Maximal heart rate
- HRR:
-
Heart rate reserve
- iAUC:
-
Integrated area under the curve
- MAGE:
-
Mean amplitude of glycemic excursions
- RER:
-
Respiratory exchange ratio
- RM-ANOVA:
-
Repeated measures analysis of variance
- SplitEx:
-
Split exercise
- SD-BGRC:
-
Standard deviation of blood glucose rate of change
- T2D:
-
Type 2 diabetic patients
- 8-iso PGF2ɑ:
-
8-iso prostaglandin F2α
- VO2 max:
-
Maximal oxygen uptake
References
Arikawa AY, Thomas W, Gross M et al (2013) Aerobic training reduces systemic oxidative stress in young women with elevated levels of F2-isoprostanes. Contemp Clin Trials 34:212–217
Basu S (2008) F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 10:1405–1434
Blaak EE, Antoine JM, Benton D et al (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13:923–984
Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KHGL (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262:2395–23401
Brinkmann C, Blossfeld J, Pesch M et al (2012) Lipid-peroxidation and peroxiredoxin-overoxidation in the erythrocytes of non-insulin-dependent type 2 diabetic men during acute exercise. Eur J Appl Physiol 112:2277–2287
Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625
Campbell PT, Gross MD, Potter JD et al (2010) Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc 42:1448–1453
Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7
Ceriello A, Quagliaro L, Catone B et al (2002) Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25:1439–1443
Ceriello A, Esposito K, Piconi L et al (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354
Chacko E (2014) Timing and intensity of exercise for glucose control. Diabetologia 57:2425–2426
Clarke W, Kovatchev B (2009) Statistical tools to analyze continuous glucose monitor data. Diabetes Technol Ther 11(Suppl 1):S45–S54
Colberg SR, Zarrabi L, Bennington L et al (2009) Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc 10:394–397
Colberg SR, Albright AL, Blissmer BJ et al (2010) Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc 42:2282–2303
Davì G, Ciabattoni G, Consoli A et al (1999) In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229
Eriksen L, Dahl-Petersen I, Haugaard SB, Dela F (2007) Comparison of the effect of multiple short-duration with single long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus. Diabetologia 50:2245–2253
Figueira FR, Umpierre D, Casali KR et al (2013) Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: crossover randomized trial. PLoS One 8:e5773
Francois ME, Baldi JC, Manning PJ et al (2014) “Exercise snacks” before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia 57:1437–1445
Gaudet-Savard T, Ferland A, Broderick TL et al (2007) Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 14:831–836
Goto K, Tanaka K, Ishii N et al (2011) A single versus multiple bouts of moderate-intensity exercise for fat metabolism. Clin Physiol Funct Imaging 31:215–220
Guerci B, Monnier L, Serusclat P et al (2012) Continuous glucose profiles with vildagliptin versus sitagliptin in add-on to metformin: results from the randomized Optima study. Diabetes Metab 38:359–366
Haxhi J, Scotto Di Palumbo A, Sacchetti M (2013) Exercising for metabolic control: is timing important? Ann Nutr Metab 62:14–25
Howley ET, Basset DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sport Exerc 27:1292–1301
Kadiiska MB, Gladen BC, Baird DD et al (2005) Biomarkers of Oxidative Stress Study II. Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710
Larsen JJ, Dela F, Kjaer M, Galbo H (1997) The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 40:447–453
Little JP, Gillen JB, Percival ME et al (2011) Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol 111:1554–1560
Manders RJF, Van Dijk JWM, Van Loon LJC (2010) Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc 42:219–225
Monnier L, Colette C, Rabasa-Lhoret R et al (2002) Morning hyperglycemic excursions. Diabetes Care 25:737–741
Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687
Monnier L, Colette C, Dunseath GJ, Owens DR (2007) The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 30:263–269
Morrato EH, Hill JO, Wyatt HR et al (2007) Physical activity in US adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 30:203–209
Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203
O’Keefe JH, Bell DSH (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100:899–904
Oberlin DJ, Mikus CR, Kearney ML et al (2014) One bout of exercise alters free-living postprandial glycemia in type 2 diabetes. Med Sci Sports Exerc 46:232–238
Patrono C, Falco A, Davì G (2005) Isoprostane formation and inhibition in atherothrombosis. Curr Opin Pharmacol 5:198–203
Poirier P, Tremblay A, Catellier C et al (2000) Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes. J Clin Endocrinol Metab 85:2860–2864
Poirier P, Mawhinney S, Grondin L et al (2001) Prior meal enhances the plasma glucose lowering effect of exercise in type 2 diabetes. Med Sci Sports Exerc 33:1259–1264
Praet SFE, van Loon LJC (2007) Optimizing the therapeutic benefits of exercise in type 2 diabetes. J Appl Physiol 103:1113–1120
Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575
Sampson MJ, Gopaul N, Davies IR et al (2002) Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care 25:537–541
Trost S, Owen N, Bauman A et al (2002) Correlates of adults’ participation in physical activity: review and update. Med Sci Sport Exerc 34:1996–2001
Van Dijk JW, Manders RJF, Tummers K et al (2012) Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients. Diabetologia 55:1273–1282
Van Dijk JW, Venema M, Van Mechelen W et al (2013) Effect of moderate-intensity exercise versus activities of daily living on 24-h blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care 36:3448–3453
Acknowledgments
We thank Doctor Federico Quinzi for the help in data analysis and Doctor Tittania Musella for helping with patient recruitment and Medtronic Inc. for kindly providing the CGM devices. The study was supported by a grant from the University of Rome “Foro Italico” (112013).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Fabio Fischetti.
L. Di Luigi and M. Sacchetti contributed equally.
Rights and permissions
About this article
Cite this article
Haxhi, J., Leto, G., di Palumbo, A.S. et al. Exercise at lunchtime: effect on glycemic control and oxidative stress in middle-aged men with type 2 diabetes. Eur J Appl Physiol 116, 573–582 (2016). https://doi.org/10.1007/s00421-015-3317-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00421-015-3317-3