European Journal of Applied Physiology

, Volume 116, Issue 3, pp 471–480 | Cite as

Football training in men with prostate cancer undergoing androgen deprivation therapy: activity profile and short-term skeletal and postural balance adaptations

  • Jacob Uth
  • Therese Hornstrup
  • Jesper F. Christensen
  • Karl B. Christensen
  • Niklas R. Jørgensen
  • Eva W. Helge
  • Jakob F. Schmidt
  • Klaus Brasso
  • Jørn W. Helge
  • Markus D. Jakobsen
  • Lars L. Andersen
  • Mikael Rørth
  • Julie Midtgaard
  • Peter Krustrup
Original Article



To investigate the activity profile of football training and its short-term effects on bone mass, bone turnover markers (BTMs) and postural balance in men with prostate cancer (PCa) undergoing androgen deprivation therapy (ADT).


This was a randomised 12-week study in which men with PCa undergoing ADT were assigned to a football intervention group [FTG, n = 29, 67 ± 7 (±SD) years] training 2‒3 times per week for 45‒60 min or to a control group (n = 28, 66 ± 5 years). The activity profile was measured using a 5-Hz GPS. The outcomes were total body and leg bone mineral content (BMC) and density, BTMs and postural balance.


In the last part of the 12 weeks, FTG performed 194 ± 41 accelerations and 296 ± 65 decelerations at >0.6 m/s/s and covered a distance of 905 ± 297 m at speeds >6 km/h and 2646 ± 705 m per training session. Analysis of baseline-to-12-week change scores showed between-group differences in favour of FTG in total body BMC [26.4 g, 95 % confidence interval (CI): 5.8–46.9 g, p = 0.013], leg BMC (13.8 g, 95 % CI: 7.0‒20.5 g, p < 0.001) and markers of bone formation: P1NP (36.6 µg/L, 95 % CI: 10.4‒62.8 µg/L, p = 0.008) and osteocalcin (8.6 µg/L, 95 % CI: 3.3‒13.8 µg/L, p < 0.01). The number of decelerations correlated to the increase in leg BMC (r = 0.65, p = 0.012). No between-group differences were observed for the remaining outcomes.


Football training involves numerous runs, accelerations and decelerations, which may be linked to marked increases in bone formation markers and preserved bone mass in middle-aged and elderly men with PCa undergoing ADT.

Trial registration NCT01711892.


GPS Exercise intensity Bone turnover markers (BTM) Bone mineral content (BMC) Association football Prostate cancer 



Androgen deprivation therapy


Body mass index


Bone mineral content


Bone mineral density


Bone turnover markers


Confidence interval


Standard care control group


C-terminal telopeptide of type I collagen


Dual-energy X-ray absorptiometry


Football club


Football training group


Global positioning system


Prostate cancer


Procollagen type 1 amino-terminal propeptide


Standard deviation



The authors would like to thank all the participants for their contributions to the study. The authors would also like to thank Emil Sundstrup, Ditte Marie Bruun, Christian Frandsen and Jens Jung Nielsen for their expert advice and assistance in collecting data. The study was supported by grants from the Center for Integrated Rehabilitation of Cancer Patients (CIRE), which was established and is supported by the Danish Cancer Society and the Novo Nordisk Foundation. TrygFonden as well as the Preben and Anna Simonsens Fond also supported the project.

Compliance with ethical standards

Conflict of interest



  1. Alibhai SMH, Duong-Hua M, Cheung AM et al (2010) Fracture types and risk factors in men with prostate cancer on androgen deprivation therapy: a matched cohort study of 19,079 men. J Urol 184:918–923. doi: 10.1016/j.juro.2010.04.068 CrossRefPubMedGoogle Scholar
  2. Andersen TR, Schmidt JF, Nielsen JJ et al (2014) Effect of football or strength training on functional ability and physical performance in untrained old men. Scand J Med Sci Sports 24(Suppl 1):76–85. doi: 10.1111/sms.12245 CrossRefPubMedGoogle Scholar
  3. Cormie P, Galvão DA, Spry N et al (2014) Can supervised exercise prevent treatment toxicity in prostate cancer patients initiating androgen deprivation therapy: a randomised controlled trial. BJU Int. doi: 10.1111/bju.12646 PubMedGoogle Scholar
  4. Cormie P, Newton RU, Spry N et al (2013) Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer Prostatic Dis 16:328–335. doi: 10.1038/pcan.2013.22 CrossRefPubMedGoogle Scholar
  5. Deforche B, Lefevre J, De Bourdeaudhuij I et al (2003) Physical fitness and physical activity in obese and nonobese Flemish youth. Obes Res 11:434–441. doi: 10.1038/oby.2003.59 CrossRefPubMedGoogle Scholar
  6. DeSantis CE, Lin CC, Mariotto AB et al (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252–271. doi: 10.3322/caac.21235 CrossRefPubMedGoogle Scholar
  7. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer Oxf Engl 1990 49:1374–1403. doi: 10.1016/j.ejca.2012.12.027 Google Scholar
  8. Fuller CW, Ekstrand J, Junge A et al (2006) Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Clin J Sport Med Off J Can Acad Sport Med 16:97–106CrossRefGoogle Scholar
  9. Galvao DA, Taaffe DR, Spry N et al (2008) Reduced muscle strength and functional performance in men with prostate cancer undergoing androgen suppression: a comprehensive cross-sectional investigation. Prostate Cancer Prostatic Dis 12:198–203CrossRefPubMedGoogle Scholar
  10. Gardner JR, Livingston PM, Fraser SF (2014) Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol 32:335–346. doi: 10.1200/JCO.2013.49.5523 CrossRefPubMedGoogle Scholar
  11. Greenspan SL, Coates P, Sereika SM et al (2005) Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J Clin Endocrinol Metab 90:6410–6417. doi: 10.1210/jc.2005-0183 CrossRefPubMedGoogle Scholar
  12. Hammes D, aus der Fünten K, Kaiser S, et al (2014) Injury prevention in male veteran football players—a randomised controlled trial using “FIFA 11+.” J Sports Sci 0:1–9. doi:  10.1080/02640414.2014.975736
  13. Helge EW, Aagaard P, Jakobsen MD et al (2010) Recreational football training decreases risk factors for bone fractures in untrained premenopausal women. Scand J Med Sci Sports 20:31–39. doi: 10.1111/j.1600-0838.2010.01107.x CrossRefPubMedGoogle Scholar
  14. Helge EW, Andersen TR, Schmidt JF et al (2014a) Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports 24(Suppl 1):98–104. doi: 10.1111/sms.12239 CrossRefPubMedGoogle Scholar
  15. Helge EW, Randers MB, Hornstrup T et al (2014b) Street football is a feasible health-enhancing activity for homeless men: biochemical bone marker profile and balance improved. Scand J Med Sci Sports 24(Suppl 1):122–129. doi: 10.1111/sms.12244 CrossRefPubMedGoogle Scholar
  16. Hewit J, Cronin J, Button C, Hume P (2011) Understanding deceleration in sport. Strength Cond J 33:47–52. doi: 10.1519/SSC.0b013e3181fbd62c CrossRefGoogle Scholar
  17. Jackman SR, Scott S, Randers MB et al (2013) Musculoskeletal health profile for elite female footballers versus untrained young women before and after 16 weeks of football training. J Sports Sci 31:1468–1474. doi: 10.1080/02640414.2013.796066 CrossRefPubMedGoogle Scholar
  18. Jakobsen MD, Sundstrup E, Krustrup P, Aagaard P (2011) The effect of recreational soccer training and running on postural balance in untrained men. Eur J Appl Physiol 111:521–530. doi: 10.1007/s00421-010-1669-2 CrossRefPubMedGoogle Scholar
  19. Krustrup P, Aagaard P, Nybo L et al (2010) Recreational football as a health promoting activity: a topical review. Scand J Med Sci Sports 20(Suppl 1):1–13. doi: 10.1111/j.1600-0838.2010.01108.x CrossRefPubMedGoogle Scholar
  20. Krustrup P, Nielsen JJ, Krustrup BR et al (2009) Recreational soccer is an effective health-promoting activity for untrained men. Br J Sports Med 43:825–831. doi: 10.1136/bjsm.2008.053124 CrossRefPubMedGoogle Scholar
  21. Krustrup P, Randers MB, Andersen LJ et al (2013) Soccer improves fitness and attenuates cardiovascular risk factors in hypertensive men. Med Sci Sports Exerc 45:553–560. doi: 10.1249/MSS.0b013e3182777051 CrossRefPubMedGoogle Scholar
  22. Nikander R, Kannus P, Dastidar P et al (2009) Targeted exercises against hip fragility. Osteoporos. Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 20:1321–1328. doi: 10.1007/s00198-008-0785-x CrossRefGoogle Scholar
  23. Nilsen TS, Raastad T, Skovlund E et al (2015) Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy. Acta Oncol Stockh Swed. doi: 10.3109/0284186X.2015.1037008 Google Scholar
  24. Oja P, Titze S, Kokko S et al (2015) Health benefits of different sport disciplines for adults: systematic review of observational and intervention studies with meta-analysis. Br J Sports Med 49:434–440. doi: 10.1136/bjsports-2014-093885 CrossRefPubMedGoogle Scholar
  25. Pedersen MT, Randers MB, Skotte JH, Krustrup P (2009) Recreational soccer can improve the reflex response to sudden trunk loading among untrained women. J Strength Cond Res Natl Strength Cond Assoc 23:2621–2626. doi: 10.1519/JSC.0b013e3181c701b6 CrossRefGoogle Scholar
  26. Randers MB, Nybo L, Petersen J et al (2010) Activity profile and physiological response to football training for untrained males and females, elderly and youngsters: influence of the number of players. Scand J Med Sci Sports 20:14–23. doi: 10.1111/j.1600-0838.2010.01069.x CrossRefPubMedGoogle Scholar
  27. Randers MB, Petersen J, Andersen LJ et al (2012) Short-term street soccer improves fitness and cardiovascular health status of homeless men. Eur J Appl Physiol 112:2097–2106. doi: 10.1007/s00421-011-2171-1 CrossRefPubMedGoogle Scholar
  28. Schmidt JF, Andersen TR, Horton J et al (2013) Soccer training improves cardiac function in men with type 2 diabetes. Med Sci Sports Exerc 45:2223–2233. doi: 10.1249/MSS.0b013e31829ab43c CrossRefPubMedGoogle Scholar
  29. Schmitz KH, Courneya KS, Matthews C et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42:1409–1426. doi: 10.1249/MSS.0b013e3181e0c112 CrossRefPubMedGoogle Scholar
  30. Uth J, Hornstrup T, Schmidt JF et al (2014) Football training improves lean body mass in men with prostate cancer undergoing androgen deprivation therapy. Scand J Med Sci Sports 24(Suppl 1):105–112. doi: 10.1111/sms.12260 CrossRefPubMedGoogle Scholar
  31. Uth J, Schmidt JF, Christensen JF et al (2013) Effects of recreational soccer in men with prostate cancer undergoing androgen deprivation therapy: study protocol for the “FC Prostate” randomized controlled trial. BMC Cancer 13:595. doi: 10.1186/1471-2407-13-595 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Winters-Stone KM, Dobek JC, Bennett JA et al (2014) Skeletal response to resistance and impact training in prostate cancer survivors. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000000265 PubMedCentralPubMedGoogle Scholar
  33. Zouch M, Zribi A, Alexandre C et al (2015) Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study. J Clin Densitom Off J Int Soc Clin Densitom. doi: 10.1016/j.jocd.2014.10.004 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jacob Uth
    • 1
  • Therese Hornstrup
    • 2
  • Jesper F. Christensen
    • 12
  • Karl B. Christensen
    • 6
  • Niklas R. Jørgensen
    • 9
    • 11
  • Eva W. Helge
    • 2
  • Jakob F. Schmidt
    • 2
  • Klaus Brasso
    • 4
  • Jørn W. Helge
    • 10
  • Markus D. Jakobsen
    • 5
  • Lars L. Andersen
    • 5
    • 13
  • Mikael Rørth
    • 7
  • Julie Midtgaard
    • 1
    • 8
  • Peter Krustrup
    • 2
    • 3
  1. 1.University Hospitals Centre for Health Research (UCSF), Rigshospitalet, University of CopenhagenCopenhagenDenmark
  2. 2.Department of Nutrition, Exercise and Sports, Copenhagen Centre for Team Sport and HealthUniversity of CopenhagenCopenhagenDenmark
  3. 3.Sport and Health Sciences, College of Life and Environmental SciencesUniversity of Exeter, St Luke’s CampusExeterUK
  4. 4.Copenhagen Prostate Cancer Center, Department of Urology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  5. 5.National Research Centre for the Working EnvironmentCopenhagenDenmark
  6. 6.Department of BiostatisticsUniversity of CopenhagenCopenhagenDenmark
  7. 7.Department of Oncology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  8. 8.Department of Public HealthUniversity of CopenhagenCopenhagen KDenmark
  9. 9.Department of Clinical Biochemistry, RigshospitaletResearch Center for Ageing and OsteoporosisGlostrupDenmark
  10. 10.Center for Healthy Aging, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
  11. 11.Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
  12. 12.Centre for Physical Activity Research, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  13. 13.Physical Activity and Human Performance Group, SMI, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations