Does a 20-week aerobic exercise training programme increase our capabilities to buffer real-life stressors? A randomized, controlled trial using ambulatory assessment

Abstract

Purpose

The cross-stressor adaptation hypothesis suggests that regular exercise leads to adaptations in the stress response systems that induce decreased physiological responses to psychological stressors. Even though an exercise intervention to buffer the detrimental effects of psychological stressors on health might be of utmost importance, empirical evidence is mixed. This may be explained by the use of cross-sectional designs and non-personally relevant stressors. Using a randomized controlled trial, we hypothesized that a 20-week aerobic exercise training does reduce physiological stress responses to psychological real-life stressors in sedentary students.

Methods

Sixty-one students were randomized to either a control group or an exercise training group. The academic examination period (end of the semester) served as a real-life stressor. We used ambulatory assessment methods to assess physiological stress reactivity of the autonomic nervous system (heart rate variability: LF/HF, RMSSD), physical activity and perceived stress during 2 days of everyday life and multilevel models for data analyses. Aerobic capacity (VO2max) was assessed pre- and post-intervention via cardiopulmonary exercise testing to analyze the effectiveness of the intervention.

Results

During real-life stressors, the exercise training group showed significantly reduced LF/HF (β = −0.15, t = −2.59, p = .01) and increased RMSSD (β = 0.15, t = 2.34, p = .02) compared to the control group.

Conclusions

Using a randomized controlled trial and a real-life stressor, we could show that exercise appears to be a useful preventive strategy to buffer the effects of stress on the autonomic nervous system, which might result into detrimental health outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

RMSSD:

Root mean square of successive differences

LF:

Low frequency

HF:

High frequency

AET:

Aerobic exercise training

CET:

Cardiopulmonary exercise testing

CG:

Control group

RER:

Respiratory exchange ratio

HRV:

Heart rate variability

HR:

Heart rate

ANCOVA:

Analysis of covariance

VO2max:

Maximum oxygen consumption

References

  1. Åkerstedt T, Kecklund G, Axelsson J (2007) Impaired sleep after bedtime stress and worries. Biol Psychol 76:170–173. doi:10.1016/j.biopsycho.2007.07.010

    PubMed  Article  Google Scholar 

  2. Albright C, King A, Barr Taylor C, Haskell W (1992) Effect of a six-month aerobic exercise training program on cardiovascular responsivity in healthy middle-aged adults. J Psychosom Res 36:25–36. doi:10.1016/0022-3999(92)90111-E

    PubMed  Article  CAS  Google Scholar 

  3. Anastasopoulou P, Tansella M, Stumpp J et al (2012) Classification of human physical activity and energy expenditure estimation by accelerometry and barometry. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, pp 6451–6454

  4. Anastasopoulou P, Tubic M, Schmidt S et al (2014) Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS One 9:1–7. doi:10.1371/journal.pone.0090606

    Article  CAS  Google Scholar 

  5. Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sport Med 33:889–919. doi:10.2165/00007256-200333120-00003

    Article  Google Scholar 

  6. Brooke S, Long B (1987) Efficiency of coping with a real-life stressor: a multimodal comparison of aerobic fitness. Psychophysiology. doi:10.1111/j.1469-8986.1987.tb00275.x

    PubMed  Google Scholar 

  7. Cacioppo J, Berntson G, Binkley P et al (1994) Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology 31:586–598. doi:10.1111/j.1469-8986.1994.tb02351.x

    PubMed  Article  CAS  Google Scholar 

  8. Calvo MG, Szabo A, Capafons J (1996) Anxiety and heart rate under psychological stress: the effects of exercise-training. Anxiety Stress Coping 9:321–337. doi:10.1080/10615809608249409

    PubMed  Article  CAS  Google Scholar 

  9. Childs E, de Wit H (2014) Regular exercise is associated with emotional resilience to acute stress in healthy adults. Front Physiol 5:161. doi:10.3389/fphys.2014.00161

    PubMed  PubMed Central  Article  Google Scholar 

  10. Clays E, De Bacquer D, Crasset V et al (2011) The perception of work stressors is related to reduced parasympathetic activity. Int Arch Occup Environ Health 84:185–191. doi:10.1007/s00420-010-0537-z

    PubMed  Article  Google Scholar 

  11. Clifford GD, McSharry PE, Tarassenko L (2002) Characterizing artefact in the normal human 24-hour RR time series to aid identification and artificial replication of circadian variations in human beat to beat heart rate using a simple threshold. Comput Cardiol 2002:129–132. doi:10.1109/CIC.2002.1166724

    Article  Google Scholar 

  12. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  13. Cole RJ, Kripke DF, Gruen W et al (1992) Automatic sleep/wake identification from wrist activity. Sleep 15:461–469

    PubMed  CAS  Google Scholar 

  14. Crews DJ, Landers DM (1987) A meta-analytic review of aerobic fitness and reactivity to psychosocial stressors. Med Sci Sports Exerc 19:S114–S120. doi:10.1249/00005768-198710001-00004

    PubMed  Article  CAS  Google Scholar 

  15. de Geus E, Stubbe J (2007) Aerobic exercise and stress reduction. In: Fink G (ed) Encyclopedia of Stress. Academic Press, New York, pp 73–78

  16. de Geus E, van Doornen L, Orlebeke J (1993) Regular exercise and aerobic fitness in relation to psychological make-up and physiological stress reactivity. Psychosom Med 55:347–363

    PubMed  Article  Google Scholar 

  17. Dimitriev D, Dimitriev A, Karpenko Y, Saperova E (2008) Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students. Hum Physiol 34:617–624

    Article  Google Scholar 

  18. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232. doi:10.1161/01.CIR.96.9.3224

    PubMed  Article  CAS  Google Scholar 

  19. Eleuteri A, Fisher A, Groves D, Dewhurst C (2012) An efficient time-varying filter for detrending and bandwidth limiting the heart rate variability tachogram without resampling: MATLAB open-source code and internet web-based implementation. Comput Math Methods Med 2012:1–6. doi:10.1155/2012/578785

    Article  Google Scholar 

  20. Task Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065. doi:10.1161/01.cir.93.5.1043

    Article  Google Scholar 

  21. Forcier K, Stroud LR, Papandonatos GD et al (2006) Links between physical fitness and cardiovascular reactivity and recovery to psychological stressors: a meta-analysis. Heal Psychol 25:723–739. doi:10.1037/0278-6133.25.6.723

    Article  Google Scholar 

  22. Gauvin L, Rejeski WJ, Norris JL (1996) A naturalistic study of the impact of acute physical activity on feeling states and affect in women. Heal Psychol 15:391–397

    Article  CAS  Google Scholar 

  23. Gerber M, Pühse U (2009) Do exercise and fitness protect against stress-induced health complaints? A review of the literature. Scand J Public Health 37:801–819. doi:10.1177/1403494809350522

    PubMed  Article  Google Scholar 

  24. Goedhart AD, Van Der Sluis S, Houtveen JH et al (2007) Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 44:203–215. doi:10.1111/j.1469-8986.2006.00490.x

    PubMed  Article  Google Scholar 

  25. Hamer M, Taylor A, Steptoe A (2006) The effect of acute aerobic exercise on stress related blood pressure responses: a systematic review and meta-analysis. Biol Psychol 71:183–190. doi:10.1016/j.biopsycho.2005.04.004

    PubMed  Article  Google Scholar 

  26. Hamilton P (2002) Open source ECG analysis. Comput Cardiol 29:101–104. doi:10.1109/CIC.2002.1166717

    Article  Google Scholar 

  27. Hautala AJ, Kiviniemi AM, Tulppo MP (2009) Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev 33:107–115. doi:10.1016/j.neubiorev.2008.04.009

    PubMed  Article  Google Scholar 

  28. Hazlett RL, Falkin S, Lawhorn W et al (1997) Cardiovascular reactivity to a naturally occurring stressor: development and psychometric evaluation of a psychophysiological assessment procedure. J Behav Med 20:551–570. doi:10.1023/A:1025566408046

    PubMed  Article  CAS  Google Scholar 

  29. Hoffman L, Rovine MJ (2007) Multilevel models for the experimental psychologist: foundations and illustrative examples. Behav Res Methods 39:101–117. doi:10.3758/BF03192848

    PubMed  Article  Google Scholar 

  30. Hughes JW, Stoney CM (2000) Depressed mood is related to high-frequency heart rate variability during stressors. Psychosom Med 62:796–803. doi:10.1097/00006842-200011000-00009

    PubMed  Article  CAS  Google Scholar 

  31. Jackowska M, Dockray S, Endrighi R et al (2012) Sleep problems and heart rate variability over the working day. J Sleep Res 21:434–440. doi:10.1111/j.1365-2869.2012.00996.x

    PubMed  Article  Google Scholar 

  32. Jackson EM, Dishman RK (2006) Cardiorespiratory fitness and laboratory stress: a meta-regression analysis. Psychophysiology 43:57–72. doi:10.1111/j.1469-8986.2006.00373.x

    PubMed  Article  Google Scholar 

  33. Jarczok MN, Jarczok M, Mauss D et al (2013) Autonomic nervous system activity and workplace stressors—a systematic review. Neurosci Biobehav Rev 37:1810–1823. doi:10.1016/j.neubiorev.2013.07.004

    PubMed  Article  Google Scholar 

  34. Jekauc D, Wagner MO, Kahlert D, Woll A (2013) Reliability and validity of MoMo-physical-activity-questionnaire for adolescents (MoMo-AFB). Diagnostica 59:100–111. doi:10.1026/0012-1924/a000083

    Article  Google Scholar 

  35. Klaperski S, von Dawans B, Heinrichs M, Fuchs R (2013) Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women? Psychol Sport Exerc 14:266–274. doi:10.1016/j.psychsport.2012.11.003

    Article  Google Scholar 

  36. Klaperski S, von Dawans B, Heinrichs M, Fuchs R (2014) Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial. J Behav Med 37:1118–1133. doi:10.1007/s10865-014-9562-9

    PubMed  Article  Google Scholar 

  37. Lin YH, Chen CY, Lin SH et al (2013) Gender differences in cardiac autonomic modulation during medical internship. Psychophysiology 50:521–527. doi:10.1111/psyp.12038

    PubMed  Article  Google Scholar 

  38. Lindgren M, Alex C, Shapiro P et al (2013) Effects of aerobic conditioning on cardiovascular sympathetic response to and recovery from challenge. Psychophysiology 50:963–973. doi:10.1111/psyp.12078

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Loft P, Thomas MG, Petrie KJ et al (2007) Examination stress results in altered cardiovascular responses to acute challenge and lower cortisol. Psychoneuroendocrinology 32:367–375. doi:10.1016/j.psyneuen.2007.02.004

    PubMed  Article  CAS  Google Scholar 

  40. Lovallo W (2011) Do low levels of stress reactivity signal poor states of health? Biol Psychol 86:121–128. doi:10.1016/j.biopsycho.2010.01.006

    PubMed  PubMed Central  Article  Google Scholar 

  41. Lucini D, Norbiato G, Clerici M, Pagani M (2002) Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension 39:184–188. doi:10.1161/hy0102.100784

    PubMed  Article  CAS  Google Scholar 

  42. Lucini D, Di Fede G, Parati G, Pagani M (2005) Impact of chronic psychosocial stress on autonomic cardiovascular regulation in otherwise healthy subjects. Hypertension 46:1201–1206. doi:10.1161/01.HYP.0000185147.32385.4b

    PubMed  Article  CAS  Google Scholar 

  43. Malliani A, Pagani M, Montano N, Mela GS (1998) Sympathovagal balance: a reappraisal. Circulation 98:2640–2643. doi:10.1161/01.CIR.98.23.2640.a

    PubMed  Article  CAS  Google Scholar 

  44. Meyer T, Kindermann W (1999) Die maximale Sauerstoffaufnahme. Dtsch Z Sportmed 50:285–286

    Google Scholar 

  45. Nummela A, Hynynen E, Kaikkonen P, Rusko H (2010) Endurance performance and nocturnal HRV indices. Int J Sports Med 31:154–159. doi:10.1055/s-0029-1243221

    PubMed  Article  CAS  Google Scholar 

  46. Pichot V, Bourin E, Roche F et al (2002) Quantification of cumulated physical fatigue at the workplace. Pflug Arch Eur J Physiol 445:267–272. doi:10.1007/s00424-002-0917-7

    Article  CAS  Google Scholar 

  47. Rimmele U, Zellweger BC, Marti B et al (2007) Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology 32:627–635. doi:10.1016/j.psyneuen.2007.04.005

    PubMed  Article  CAS  Google Scholar 

  48. Rimmele U, Seiler R, Marti B et al (2009) The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology 34:190–198. doi:10.1016/j.psyneuen.2008.08.023

    PubMed  Article  Google Scholar 

  49. Ritvanen T, Louhevaara V, Helin P et al (2007) Effect of aerobic fitness on the physiological stress responses at work. Int J Occup Med Environ Health 20:1–8. doi:10.2478/v10001-007-0005-5

    PubMed  Article  Google Scholar 

  50. Roecker K (2007) Sportmedizin für Ärzte. Lehrbuch auf der Grundlage des Weiterbildungssystems der Deutschen Gesellschaft für Sportmedizin und Prävention (DGSP). In: Dickhut HH, Mayer F, Röcker K, Berg A (eds) Deutscher Ärzteverlag, Köln, pp 70–72

  51. Saito K, Hiya A, Uemura Y, Furuta M (2008) Clinical training stress and autonomic nervous function in female medical technology students: analysis of heart rate variability and 1/f fluctuation. J Med Investig 55:227–230. doi:10.2152/jmi.55.227

    Article  Google Scholar 

  52. Sakakibara M, Kanematsu T, Yasuma F, Hayano J (2008) Impact of real-world stress on cardiorespiratory resting function during sleep in daily life. Psychophysiology 45:667–670. doi:10.1111/j.1469-8986.2008.00665.x

    PubMed  Article  Google Scholar 

  53. Sausen KP, Lovallo WR, Pincomb GA, Wilson MF (1992) Cardiovascular responses to occupational stress in male medical students: a paradigm for ambulatory monitoring studies. Heal Psychol 11:55–60. doi:10.1037/0278-6133.11.1.55

    Article  CAS  Google Scholar 

  54. Schwartz A (2003) Toward a causal model of cardiovascular responses to stress and the development of cardiovascular disease. Psychosom Med 65:22–35. doi:10.1097/01.PSY.0000046075.79922.61

    PubMed  Article  Google Scholar 

  55. Sloan R, Shapiro P, DeMeersman R et al (2011) Impact of aerobic training on cardiovascular reactivity to and recovery from challenge. Psychosom Med 73:134–141. doi:10.1097/PSY.0b013e31820a1174

    PubMed  PubMed Central  Article  Google Scholar 

  56. Sothmann M (2006) The cross-stressor adaptation hypothesis and exercise training. In: Acevedo EO, Ekkekakis P (eds) The psychobiology of physical activity. Human Kinetics, Champaign, pp 149–160

    Google Scholar 

  57. Sothmann M, Hart BA, Horn TS (1991) Plasma catecholamine response to acute psychological stress in humans: relation to aerobic fitness and exercise training. Med Sci Sports Exerc 23:860–867

    PubMed  CAS  Google Scholar 

  58. Sothmann M, Buckworth J, Claytor R et al (1996) Exercise training and the cross-stressor adaptation hypothesis. Exerc Sport Sci Rev 24:267–287

    PubMed  Article  CAS  Google Scholar 

  59. Spalding TW, Jeffers LS, Porges SW, Hatfield BD (2000) Vagal and cardiac reactivity to psychological stressors in trained and untrained men. Med Sci Sports Exerc 32:581–591

    PubMed  Article  CAS  Google Scholar 

  60. Spalding TW, Lyon LA, Steel DH, Hatfield BD (2004) Aerobic exercise training and cardiovascular reactivity to psychological stress in sedentary young normotensive men and women. Psychophysiology 41:552–562. doi:10.1111/j.1469-8986.2004.00184.x

    PubMed  Article  Google Scholar 

  61. Spangler G (1997) Psychological and physiological responses during an exam and their relation to personality characteristics. Psychoneuroendocrinology 22:423–441

    PubMed  Article  CAS  Google Scholar 

  62. Stein PK, Boutcher SH (1992) The effect of participation in an exercise training program on cardiovascular reactivity in sedentary middle-aged males. Int J Psychophysiol 13:215–223. doi:10.1016/0167-8760(92)90071-I

    PubMed  Article  CAS  Google Scholar 

  63. Tharion E, Parthasarathy S, Neelakantan N (2009) Short-term heart rate variability measures in students during examinations. Natl Med J India 22:63–66

    PubMed  Google Scholar 

  64. Trull T, Ebner-Priemer UW (2013) Ambulatory assessment. Annu Rev Clin Psychol 9:151–176. doi:10.1146/annurev-clinpsy-050212-185510

    PubMed  PubMed Central  Article  Google Scholar 

  65. Van Someren EJW, Lazeron RHC, Vonk BFM et al (1996) Gravitational artefact in frequency spectra of movement acceleration: implications for actigraphy in young and elderly subjects. J Neurosci Methods 65:55–62. doi:10.1016/0165-0270(95)00146-8

    PubMed  Article  Google Scholar 

  66. Vesterinen V, Häkkinen K, Hynynen E et al (2013) Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sport 23:171–180. doi:10.1111/j.1600-0838.2011.01365.x

    Article  CAS  Google Scholar 

  67. Vrijkotte TG, van Doornen LJ, de Geus EJ (2000) Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 35:880–886. doi:10.1161/01.HYP.35.4.880

    PubMed  Article  CAS  Google Scholar 

  68. Weekes N, Lewis R, Patel F et al (2006) Examination stress as an ecological inducer of cortisol and psychological responses to stress in undergraduate students. Stress 9:199–206. doi:10.1080/10253890601029751

    PubMed  Article  Google Scholar 

  69. Weekes NY, Lewis RS, Goto SG et al (2008) The effect of an environmental stressor on gender differences on the awakening cortisol response. Psychoneuroendocrinology 33:766–772. doi:10.1016/j.psyneuen.2008.03.003

    PubMed  Article  CAS  Google Scholar 

  70. Wilhelm H, Grossman P, Müller MI (2012) Bridging the gap between the laboratory and the real world: integrative ambulatory psychophysiology. In: Mehl MR, Conner TS (eds) Handbook of research methods for studying daily life. The Guilford Press, New York, pp 210–234

    Google Scholar 

  71. Youngstedt SD (2005) Effects of exercise on sleep. Clin Sports Med 24:355–365. doi:10.1016/j.csm.2004.12.003

    PubMed  Article  Google Scholar 

  72. Yusuf PS, Hawken S, Ôunpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952. doi:10.1016/S0140-6736(04)17018-9

    PubMed  Article  Google Scholar 

  73. Zanstra YJ, Johnston DW (2011) Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol Psychol 86:98–105. doi:10.1016/j.biopsycho.2010.05.002

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Birte von Haaren.

Additional information

Communicated by Keith Phillip George.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Haaren, B., Ottenbacher, J., Muenz, J. et al. Does a 20-week aerobic exercise training programme increase our capabilities to buffer real-life stressors? A randomized, controlled trial using ambulatory assessment. Eur J Appl Physiol 116, 383–394 (2016). https://doi.org/10.1007/s00421-015-3284-8

Download citation

Keywords

  • Cross-stressor adaptation hypothesis
  • Ambulatory assessment
  • Real life
  • Psychological stress
  • Heart rate variability
  • Randomized controlled trial
  • Aerobic exercise