Skip to main content

Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion



There are conflicts in the literature concerning the crossover or non-local effects of stretching. The objective of this study was to evaluate whether static (SS) and dynamic (DS) stretching of the shoulders would affect hip flexor range of motion (ROM) and performance and reciprocally whether SS and DS of the lower body would affect shoulder extension ROM and performance.


A randomized crossover study design examined the acute effects of upper and lower body SS and DS on lower and upper body performance measures, respectively. Experimental sessions included upper and lower body control tests, upper body (shoulder horizontal abduction) SS and lower body (hip abduction) SS, upper body (shoulder horizontal abduction and adduction) DS and lower body DS (hip abduction and adduction). Passive static and dynamic ROM (hip flexion, shoulder extension), leg flexor and elbow flexor maximal voluntary contraction isometric force, fatigue endurance and electromyography were measured.


There were significant shoulder ROM increases following lower body SS (P < 0.010,  % = 8.2 %) and DS (P < 0.019,  % = 9 %). There was a significant hip flexor ROM (P < 0.016,  % = 5.2 %) increase following upper body SS. There were no significant main effects or interactions for dynamic ROM or muscle force and activation variables.


The lack of stretch-induced force and fatigue changes suggests that rather than a mechanical or neural drive mechanism, an enhanced stretch tolerance was likely the significant factor in the improved ROM.

This is a preview of subscription content, access via your institution.

Fig. 1



Analysis of variance


Dynamic stretching




Force produced within first 100 ms of the contraction




Integrated electromyography


Lower body control


Lower body dynamic stretching


Lower body static stretching


Maximum voluntary contraction


Non-local muscle fatigue


Point of discomfort


Range of motion


Revolutions per minute


Surface electromyography


Static stretching


Upper body control


Upper body dynamic stretching


Upper body static stretching


  • Aboodarda SJ, Copithorne D, Power KE, Drinkwater EJ, Behm DG (2014) Elbow flexor fatigue modulates central excitability of the knee extensors. Appl Physiol Nutr Metab J. doi:10.1139/apnm-2015-0088

    Google Scholar 

  • Alcaraz PE, Sánchez-Lorente J, Blazevich AJ (2008) Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J Strength Cond Res 22(3):667–671

    PubMed  Article  Google Scholar 

  • Amann M, Venturelli M, Ives SJ, McDaniel J, Layee G, Rossman MJ, Richardson RS (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115(3):355–364. doi:10.1152/japplphysiol.00049.2013

    PubMed  PubMed Central  Article  Google Scholar 

  • Behm DG, Chaouachi A (2011) A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol 111(11):2633–2651. doi:10.1007/s00421-011-1879-2

    PubMed  Article  Google Scholar 

  • Behm DG, Button DC, Butt JC (2001) Factors affecting force loss with prolonged stretching. Can J Appl Physiol 26(3):261–272

    PubMed  CAS  Article  Google Scholar 

  • Behm DG, Leonard A, Young W, Bonsey A, MacKinnon S (2005) Trunk muscle EMG activity with unstable and unilateral exercises. J Strength Cond Res 19(1):193–201

    PubMed  Google Scholar 

  • Behm DG, Plewe S, Grage P, Rabbani A, Beigi HT, Byrne JM, Button DC (2011) Relative static stretch-induced impairments and dynamic stretch-induced enhancement are similar in young and middle-aged men. Appl Physiol Nutr Metab 36:790–797. doi:10.1139/H11-107

    PubMed  Article  Google Scholar 

  • Behm DG, Peach A, Maddigan M, Aboodarda SJ, DiSanto MC, Button DC, Maffiuletti NA (2013) Massage and stretching reduce spinal reflex excitability without affecting twitch contractile properties. J Electromyogr Kinesiol 23(5):1215–1221. doi:10.1016/j.jelekin.2013.05.002

    PubMed  Article  Google Scholar 

  • Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD (2012) Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol 113(9):1446–1455

    PubMed  CAS  Article  Google Scholar 

  • Canadian Society for Exercise Physiology (2011) Physical activity readiness questionnaire-plus.

  • Chaouachi A, Padulo J, Kasmi S, Ben Othmen A, Chatra M, Behm DG (2015) Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging J. doi:10.1111/cpf.12263

    Google Scholar 

  • Ciccone AB, Brown LE, Coburn JW, Galpin AJ (2014) Effects of traditional vs. alternating whole-body strength training on squat performance. J Strength Cond Res 28(9):2569–2577

    PubMed  Article  Google Scholar 

  • Costa PB, Herda TJ, Herda AA, Cramer JT (2014) Effects of dynamic stretching on strength, muscle imbalance, and muscle activation. Med Sci Sports Exerc 46(3):586593. doi:10.1249/MSS.0000000000000138

    Article  Google Scholar 

  • da Silva JJ, Behm DG, Gomes WA, Henrique F, de Oliveira SD, Soares EG, Serpa EP, de Barros VG, Lopes CR, Marchetti PH (2015) Unilateral plantar flexors static-stretching effects on ipsilateral and contralateral jump measures. J Sport Sci Med 14:315–321

    Google Scholar 

  • Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 22:381–391

    PubMed  CAS  Article  Google Scholar 

  • Doix AC, Lefèvre F, Colson SS (2013) Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS One 8(5):64–91. doi:10.1371/journal.pone.0064910

    Article  Google Scholar 

  • Grabiner MD, Owings TM (1999) Effects of eccentrically and concentrically induced unilateral fatigue on the involved and uninvolved limbs. J Electromyogr Kinesiol 9:185–189

    PubMed  CAS  Article  Google Scholar 

  • Guissard N, Duchateau J, Hainaut K (1988) Muscle stretching and motoneuron excitability. Eur J Appl Physiol 58:47–52

    CAS  Article  Google Scholar 

  • Hallaçeli H, Uruç V, Uysal HH, Özden R, Hallaçeli C, Soyuer F, Parpucu TI, Yengil E, Cavlak U (2014) Normal hip, knee and ankle range of motion in the Turkish population. Acta Orthop Traumatol Turc 48(1):37–42

    PubMed  Article  Google Scholar 

  • Halperin I, Aboodarda SJ, Basset FA, Byrne JM, Behm DG (2014a) Pacing strategies during repeated maximal voluntary contractions. Eur J Appl Physiol 114(7):1413–1420. doi:10.1007/s00421-014-2872-3

    PubMed  CAS  Article  Google Scholar 

  • Halperin I, Aboodarda SJ, Behm DG (2014b) Knee extension fatigue attenuates repeated force production of the elbow flexors. Eur J Sport Sci 14(8):823–829. doi:10.1080/17461391.2014.911355

    PubMed  Article  Google Scholar 

  • Halperin I, Copithorne D, Behm DG (2014c) Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl Physiol Nutr Metab 39:1–7

    Article  Google Scholar 

  • Herda TJ, Cramer JT, Ryan ED, McHugh MP, Stout JR (2008) Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res 22(3):809–817

    PubMed  Article  Google Scholar 

  • Humphry AT, Lloyd-Davies EJ, Teare RJ, Williams KE, Strutton PH, Davey NJ (2004) Specificity and functional impact of post-exercise depression of cortically evoked motor potentials in man. Eur J Appl Physiol 92:211–218

    PubMed  CAS  Article  Google Scholar 

  • Kawamoto K, Aboodarda SJ, Behm DG (2014) Effect of load and volume with dynamic fatiguing contractions on contralateral homologous muscle performance. J Sci Sports Med 13:836–845

    Google Scholar 

  • Kennedy A, Hug F, Sveistrup H, Guevel A (2013) Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. Eur J Appl Physiol 113:559–566. doi:10.1007/200421-012-2462-1

    PubMed  Article  Google Scholar 

  • Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659

    PubMed  CAS  Google Scholar 

  • Lima BN, Lucareli PRL, Gomes WA, Silva WJ, Bley AS, Hartigan EH, Marchetti PH (2014) The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J Sports Sci Med 13:559–565

    Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M (1995) Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports 5(6):342–347

    PubMed  CAS  Article  Google Scholar 

  • Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996a) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(1):291–298

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M (1996b) Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports 6(6):323–328

    PubMed  CAS  Article  Google Scholar 

  • Magnusson SP, Aagaard P, Nielsen J (2000) Passive energy return after repeated stretches of the hamstring muscle tendon unit. Med Sci Sports Exerc 32:1160–1164

    PubMed  CAS  Article  Google Scholar 

  • Marchetti PH, de Oliveira Silva FHD, Soares EG, Serpa EP, Nardi PSM, Vilela GB, Behm DG (2014) Upper limb static stretching protocol decreases maximal concentric jump performance. J Sport Sci Med 13:945–950

    Google Scholar 

  • Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 454:957–969

    PubMed  CAS  Article  Google Scholar 

  • Maulder P, Cronin J (2005) Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport 6(2):74–82

    Article  Google Scholar 

  • Millet GY, Lepers R (2003) Alterations in neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34(2):105–116

    Article  Google Scholar 

  • Murphy JR, DiSanto MC, Alkanani T, Behm DG (2010) Aerobic activity before and following short duration static stretching improves range of motion and performance versus a traditional warm-up. Appl Physiol Nutr Metabol 35:679–690

    Article  Google Scholar 

  • Nelson AG, Kokkonen J, Winchester JB, Kalani W, Peterson K, Kenly MS, Arnall DA (2012) A 10-week stretching program increases strength in the contralateral muscle. J Strength Cond Res 26(3):832–836

    PubMed  Google Scholar 

  • Paillard T, Chaubet V, Maitre J, Dumitrescu M, Borel L (2010) Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb. Neurosci Res 68:301–306. doi:10.1016/j.neures.2010.08.004

    PubMed  Article  Google Scholar 

  • Power K, Behm D, Cahill F, Carroll M, Young W (2004) An acute bout of static stretching: effects on force and jumping performance. Med Sci Sports Exerc 36(8):1389–1396

    PubMed  Article  Google Scholar 

  • Rattey J, Martin PG, Kay D, Cannon J, Marino FE (2006) Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect. Pflugers Arch Eur J Physiol 452:199–207

    CAS  Article  Google Scholar 

  • Regueme SC, Barthelemy J, Nicol JB (2007) Exhaustive stretch-shortening cycle exercise: no contralateral effects on muscle activity in maximal motor performances. Scand J Med Sci Sports 17:547–555. doi:10.1111/j.1600-0838.2006.00614.x

    PubMed  CAS  Article  Google Scholar 

  • Rhea MR (2004) Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res 18(4):918–920

    PubMed  Google Scholar 

  • Roaas A, Andersson G (1982) Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand 53:205–208

    PubMed  CAS  Article  Google Scholar 

  • Ross EZ, Middleton N, Shave R, George K, Nowicky A (2007) Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Exp Physiol 92(2):417–426

    PubMed  Article  Google Scholar 

  • Ross EZ, Goodall S, Stevens A, Harris I (2010) Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc 42(6):1184–1190

    PubMed  Google Scholar 

  • Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC (2011) Fatiguing intermittent lower limb exercise influences corticospinal and cortico-cortical excitability in the non-exercised upper limb. Brain Stimul 4:90–96

    PubMed  Article  Google Scholar 

  • Todd G, Petersen NT, Taylor JL, Gandevia SC (2003) The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res 150:308–313

    PubMed  Google Scholar 

  • Triscott S, Gordon J, Kuppuswamy A, King N, Davey N, Ellaway P (2008) Differential effects of endurance and resistance training on central fatigue. J Sports Sci 26(9):941–951. doi:10.1080/02640410701885439

    PubMed  Article  Google Scholar 

  • Zijdewind I, Zwarts MJ, Kernell D (1998) Influence of a voluntary fatigue test on the contralateral homologous muscle in humans? Neurosci Lett 253:41–44

    PubMed  CAS  Article  Google Scholar 

Download references


This research was partially funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada. We thank the participants for their time and Dr. Thamir Alkanani for his technical assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David George Behm.

Ethics declarations

Conflict of interest

All authors declare that there were no conflicts of interest.

Additional information

Communicated by Olivier Seynnes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behm, D.G., Cavanaugh, T., Quigley, P. et al. Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol 116, 241–249 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Crossover fatigue
  • Non-local muscle fatigue
  • Flexibility
  • Range of motion
  • Strength
  • Electromyography