Skip to main content

Advertisement

Log in

Maximal force and tremor changes across the menstrual cycle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Sex hormones have profound effects on the nervous system in vitro and in vivo. The present study examines the effect of the menstrual cycle on maximal isometric force (MVC) and tremor during an endurance task.

Methods

Nine eumenorrheic females participated in five study visits across their menstrual cycle. In each menstrual phase, an MVC and an endurance task to failure were performed. Tremor across the endurance task was quantified as the coefficient of variation in force and was assessed in absolute time and relative percent time to task failure.

Results

MVC decreases 23 % from ovulation to the mid luteal phase of the menstrual cycle. In absolute time, the mid luteal phase has the highest initial tremor, though the early follicular phase has substantially higher tremor than other phases after 150 s of task performance. In relative time, the mid luteal phase has the highest level of tremor throughout the endurance task.

Conclusions

Both MVC and tremor during an endurance task are modified by the menstrual cycle. Performance of tasks and sports which require high force and steadiness to exhaustion may be decreased in the mid luteal phase compared to other menstrual phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BBT:

Basal body temperature

ERα:

Estrogen receptor alpha

GABA:

Γ-aminobutyric acid

MVC:

Maximal voluntary contraction

References

  • Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, Lephart SM (2007) Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc 15(7):901–907

    Article  PubMed  Google Scholar 

  • Birch K, Reilly T (1999) Manual handling performance: the effects of menstrual cycle phase. Ergonomics 42(10):1317–1332

    Article  PubMed  CAS  Google Scholar 

  • Birch K, Reilly T (2002) The diurnal rhythm in isometric muscular performance differs with eumenorrheic menstrual cycle phase. Chronobiol Int 19(4):731–742

    Article  PubMed  CAS  Google Scholar 

  • Bulun S, Adashi E (2011) The physiology and pathology of the female reproductive axis. In: Melmed S, Polonsky K, PR L, Kronenberg H (eds) Williams textbook of endocrinology, vol 12. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ (2013) Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 65(2):710–778

    Article  PubMed  Google Scholar 

  • Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci 231(1264):359–369

    Article  PubMed  CAS  Google Scholar 

  • de Mouzon J, Testart J, Lefevre B, Pouly JL, Frydman R (1984) Time relationships between basal body temperature and ovulation or plasma progestins. Fertil Steril 41(2):254–259

    PubMed  Google Scholar 

  • Dibrezzo R, Fort IL, Brown B (1988) Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Ther 10(4):113–116

    Article  PubMed  CAS  Google Scholar 

  • Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, Weiss E, Rothman DL, Krystal JH (2002) Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59(9):851–858

    Article  PubMed  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Fulco C, Rock P, Muza S, Lammi E, Cymerman A, Butterfield G, Moore L, Braun B, Lewis S (1999) Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 167(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Greeves JP, Cable NT, Luckas MJ, Reilly T, Biljan MM (1997) Effects of acute changes in oestrogen on muscle function of the first dorsal interosseus muscle in humans. J Physiol 500(Pt 1):265–270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hampson E (1990) Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15(2):97–111

    Article  PubMed  CAS  Google Scholar 

  • Hampson E, Kimura D (1988) Reciprocal effects of hormonal fluctuations on human motor and perceptual-spatial skills. Behav Neurosci 102(3):456–459

    Article  PubMed  CAS  Google Scholar 

  • Harada M, Kubo H, Nose A, Nishitani H, Matsuda T (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32(5):828–833

    Article  PubMed  Google Scholar 

  • Herzog AG, Friedman MN, Freund S, Pascual-Leone A (2001) Transcranial magnetic stimulation evidence of a potential role for progesterone in the modulation of premenstrual corticocortical inhibition in a woman with catamenial seizure exacerbation. Epilepsy Behav 2(4):367–369

    Article  PubMed  CAS  Google Scholar 

  • Hoffman M, Harter RA, Hayes BT, Wojtys EM, Murtaugh P (2008) The interrelationships among sex hormone concentrations, motoneuron excitability, and anterior tibial displacement in women and men. J Athl Train 43(4):364–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter SK, Critchlow A, Shin I-S, Enoka RM (2004) Fatigability of the elbow flexor muscles for a sustained submaximal contraction is similar in men and women matched for strength. J Appl Physiol 96(1):195–202

    Article  PubMed  Google Scholar 

  • Janse de Jonge XA, Boot CR, Thom JM, Ruell PA, Thompson MW (2001) The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 530(Pt 1):161–166

    Article  PubMed  CAS  Google Scholar 

  • Jurkowski J, Jones NL, Toews CJ, Sutton JR (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51(6):1493–1499

    PubMed  CAS  Google Scholar 

  • Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H (2009) Muscle and tendon properties during menstrual cycle. Int J Sport Med 30(02):139–143

    Article  CAS  Google Scholar 

  • Lebrun C, McKenzie D, Prior J, Taunton J (1995) Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 27(3):437–444

    Article  PubMed  CAS  Google Scholar 

  • Montgomery MM, Shultz SJ (2010) Isometric knee-extension and knee-flexion torque production during early follicular and postovulatory phases in recreationally active women. J Athl Train 45(6):586–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips SK, Sanderson AG, Birch K, Bruce SA, Woledge RC (1996) Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol 496(Pt 2):551–557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prior J, Vigna Y, Schulzer M, Hall J, Bonen A (1990) Determination of luteal phase length by quantitative basal temperature methods: validation against the midcycle LH peak. Clin Invest Med 13(3):123–131

    PubMed  CAS  Google Scholar 

  • Sarwar R, Niclos BB, Rutherford OM (1996) Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 493(Pt 1):267–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schultz KN, von Esenwein SA, Hu M, Bennett AL, Kennedy RT, Musatov S, Toran-Allerand CD, Kaplitt MG, Young LJ, Becker JB (2009) Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release. J Neurosci 29(6):1897–1903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith SS, Woodward DJ, Chapin JK (1989) Sex steroids modulate motor-correlated increases in cerebellar discharge. Brain Res 476(2):307–316

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53(9):2069–2072

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51(5):599–603

    Article  PubMed  CAS  Google Scholar 

  • Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145(6):669–679

    Article  PubMed  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing

  • Tenan MS, Peng Y-L, Hackney AC, Griffin L (2013) Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Med Sci Sports Exerc 45(11):2151–2157

    Article  PubMed  Google Scholar 

  • Tenan MS, Brothers RM, Tweedell AJ, Hackney AC, Griffin L (2014) Changes in resting heart rate variability across the menstrual cycle. Psychophysiol 51(10):996–1004

    Article  Google Scholar 

  • Vaiksaar S, Jürimäe J, Mäestu J, Purge P, Kalytka S, Shakhlina L, Jürimäe T (2011) No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res 25(6):1571–1578

    Article  PubMed  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H, Francois R (2015) dplyr: a grammar of data manipulation R package version 0.4.1

  • Yoon T, Noven MLV, Nielson KA, Hunter SK (2014) Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 232:3133–3145

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Tenan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report. All research involving humans was supervised by the local ethics board and included informed consent.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenan, M.S., Hackney, A.C. & Griffin, L. Maximal force and tremor changes across the menstrual cycle. Eur J Appl Physiol 116, 153–160 (2016). https://doi.org/10.1007/s00421-015-3258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3258-x

Keywords

Navigation