European Journal of Applied Physiology

, Volume 116, Issue 1, pp 153–160

Maximal force and tremor changes across the menstrual cycle

  • Matthew S. Tenan
  • Anthony C. Hackney
  • Lisa Griffin
Original Article

Abstract

Purpose

Sex hormones have profound effects on the nervous system in vitro and in vivo. The present study examines the effect of the menstrual cycle on maximal isometric force (MVC) and tremor during an endurance task.

Methods

Nine eumenorrheic females participated in five study visits across their menstrual cycle. In each menstrual phase, an MVC and an endurance task to failure were performed. Tremor across the endurance task was quantified as the coefficient of variation in force and was assessed in absolute time and relative percent time to task failure.

Results

MVC decreases 23 % from ovulation to the mid luteal phase of the menstrual cycle. In absolute time, the mid luteal phase has the highest initial tremor, though the early follicular phase has substantially higher tremor than other phases after 150 s of task performance. In relative time, the mid luteal phase has the highest level of tremor throughout the endurance task.

Conclusions

Both MVC and tremor during an endurance task are modified by the menstrual cycle. Performance of tasks and sports which require high force and steadiness to exhaustion may be decreased in the mid luteal phase compared to other menstrual phases.

Keywords

Menstrual cycle Maximal force Tremor Estrogen Progesterone Fatigue 

Abbreviations

ANOVA

Analysis of variance

BBT

Basal body temperature

ERα

Estrogen receptor alpha

GABA

Γ-aminobutyric acid

MVC

Maximal voluntary contraction

References

  1. Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, Lephart SM (2007) Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc 15(7):901–907PubMedCrossRefGoogle Scholar
  2. Birch K, Reilly T (1999) Manual handling performance: the effects of menstrual cycle phase. Ergonomics 42(10):1317–1332PubMedCrossRefGoogle Scholar
  3. Birch K, Reilly T (2002) The diurnal rhythm in isometric muscular performance differs with eumenorrheic menstrual cycle phase. Chronobiol Int 19(4):731–742PubMedCrossRefGoogle Scholar
  4. Bulun S, Adashi E (2011) The physiology and pathology of the female reproductive axis. In: Melmed S, Polonsky K, PR L, Kronenberg H (eds) Williams textbook of endocrinology, vol 12. Elsevier Saunders, PhiladelphiaGoogle Scholar
  5. Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ (2013) Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 65(2):710–778PubMedCrossRefGoogle Scholar
  6. Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci 231(1264):359–369PubMedCrossRefGoogle Scholar
  7. de Mouzon J, Testart J, Lefevre B, Pouly JL, Frydman R (1984) Time relationships between basal body temperature and ovulation or plasma progestins. Fertil Steril 41(2):254–259PubMedGoogle Scholar
  8. Dibrezzo R, Fort IL, Brown B (1988) Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Ther 10(4):113–116PubMedCrossRefGoogle Scholar
  9. Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, Weiss E, Rothman DL, Krystal JH (2002) Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59(9):851–858PubMedCrossRefGoogle Scholar
  10. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  11. Fulco C, Rock P, Muza S, Lammi E, Cymerman A, Butterfield G, Moore L, Braun B, Lewis S (1999) Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 167(3):233–240PubMedCrossRefGoogle Scholar
  12. Greeves JP, Cable NT, Luckas MJ, Reilly T, Biljan MM (1997) Effects of acute changes in oestrogen on muscle function of the first dorsal interosseus muscle in humans. J Physiol 500(Pt 1):265–270PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hampson E (1990) Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15(2):97–111PubMedCrossRefGoogle Scholar
  14. Hampson E, Kimura D (1988) Reciprocal effects of hormonal fluctuations on human motor and perceptual-spatial skills. Behav Neurosci 102(3):456–459PubMedCrossRefGoogle Scholar
  15. Harada M, Kubo H, Nose A, Nishitani H, Matsuda T (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32(5):828–833PubMedCrossRefGoogle Scholar
  16. Herzog AG, Friedman MN, Freund S, Pascual-Leone A (2001) Transcranial magnetic stimulation evidence of a potential role for progesterone in the modulation of premenstrual corticocortical inhibition in a woman with catamenial seizure exacerbation. Epilepsy Behav 2(4):367–369PubMedCrossRefGoogle Scholar
  17. Hoffman M, Harter RA, Hayes BT, Wojtys EM, Murtaugh P (2008) The interrelationships among sex hormone concentrations, motoneuron excitability, and anterior tibial displacement in women and men. J Athl Train 43(4):364–372PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hunter SK, Critchlow A, Shin I-S, Enoka RM (2004) Fatigability of the elbow flexor muscles for a sustained submaximal contraction is similar in men and women matched for strength. J Appl Physiol 96(1):195–202PubMedCrossRefGoogle Scholar
  19. Janse de Jonge XA, Boot CR, Thom JM, Ruell PA, Thompson MW (2001) The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 530(Pt 1):161–166PubMedCrossRefGoogle Scholar
  20. Jurkowski J, Jones NL, Toews CJ, Sutton JR (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51(6):1493–1499PubMedGoogle Scholar
  21. Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H (2009) Muscle and tendon properties during menstrual cycle. Int J Sport Med 30(02):139–143CrossRefGoogle Scholar
  22. Lebrun C, McKenzie D, Prior J, Taunton J (1995) Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 27(3):437–444PubMedCrossRefGoogle Scholar
  23. Montgomery MM, Shultz SJ (2010) Isometric knee-extension and knee-flexion torque production during early follicular and postovulatory phases in recreationally active women. J Athl Train 45(6):586–593PubMedPubMedCentralCrossRefGoogle Scholar
  24. Phillips SK, Sanderson AG, Birch K, Bruce SA, Woledge RC (1996) Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol 496(Pt 2):551–557PubMedPubMedCentralCrossRefGoogle Scholar
  25. Prior J, Vigna Y, Schulzer M, Hall J, Bonen A (1990) Determination of luteal phase length by quantitative basal temperature methods: validation against the midcycle LH peak. Clin Invest Med 13(3):123–131PubMedGoogle Scholar
  26. Sarwar R, Niclos BB, Rutherford OM (1996) Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 493(Pt 1):267–272PubMedPubMedCentralCrossRefGoogle Scholar
  27. Schultz KN, von Esenwein SA, Hu M, Bennett AL, Kennedy RT, Musatov S, Toran-Allerand CD, Kaplitt MG, Young LJ, Becker JB (2009) Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release. J Neurosci 29(6):1897–1903PubMedPubMedCentralCrossRefGoogle Scholar
  28. Smith SS, Woodward DJ, Chapin JK (1989) Sex steroids modulate motor-correlated increases in cerebellar discharge. Brain Res 476(2):307–316PubMedCrossRefGoogle Scholar
  29. Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53(9):2069–2072PubMedCrossRefGoogle Scholar
  30. Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51(5):599–603PubMedCrossRefGoogle Scholar
  31. Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145(6):669–679PubMedCrossRefGoogle Scholar
  32. R Core Team (2014) R: a language and environment for statistical computingGoogle Scholar
  33. Tenan MS, Peng Y-L, Hackney AC, Griffin L (2013) Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Med Sci Sports Exerc 45(11):2151–2157PubMedCrossRefGoogle Scholar
  34. Tenan MS, Brothers RM, Tweedell AJ, Hackney AC, Griffin L (2014) Changes in resting heart rate variability across the menstrual cycle. Psychophysiol 51(10):996–1004CrossRefGoogle Scholar
  35. Vaiksaar S, Jürimäe J, Mäestu J, Purge P, Kalytka S, Shakhlina L, Jürimäe T (2011) No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res 25(6):1571–1578PubMedCrossRefGoogle Scholar
  36. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  37. Wickham H, Francois R (2015) dplyr: a grammar of data manipulation R package version 0.4.1Google Scholar
  38. Yoon T, Noven MLV, Nielson KA, Hunter SK (2014) Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 232:3133–3145PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Matthew S. Tenan
    • 1
  • Anthony C. Hackney
    • 2
    • 3
  • Lisa Griffin
    • 4
  1. 1.Human Research and Engineering Directorate, RDRL-HRS-BUS Army Research LaboratoryAberdeen Proving GroundUSA
  2. 2.Department of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Nutrition, School of Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of Kinesiology and Health EducationUniversity of Texas at AustinAustinUSA

Personalised recommendations