Advertisement

European Journal of Applied Physiology

, Volume 115, Issue 11, pp 2433–2443 | Cite as

Energetics and mechanics of walking in patients with chronic low back pain and healthy matched controls

  • Yves Henchoz
  • Nicola Soldini
  • Nicolas Peyrot
  • Davide MalatestaEmail author
Original Article

Abstract

Purpose

Walking in patients with chronic low back pain (cLBP) is characterized by motor control adaptations as a protective strategy against further injury or pain. The purpose of this study was to compare the preferred walking speed, the biomechanical and the energetic parameters of walking at different speeds between patients with cLBP and healthy men individually matched for age, body mass and height.

Methods

Energy cost of walking was assessed with a breath-by-breath gas analyser; mechanical and spatiotemporal parameters of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 13 men with cLBP and 13 control men (CTR) during treadmill walking at standard (0.83, 1.11, 1.38, 1.67 m s−1) and preferred (PWS) speeds. Low back pain intensity (visual analogue scale, cLBP only) and perceived exertion (Borg scale) were assessed at each walking speed.

Results

PWS was slower in cLBP [1.17 (SD = 0.13) m s−1] than in CTR group [1.33 (SD = 0.11) m s−1; P = 0.002]. No significant difference was observed between groups in mechanical work (P ≥ 0.44), spatiotemporal parameters (P ≥ 0.16) and energy cost of walking (P ≥ 0.36). At the end of the treadmill protocol, perceived exertion was significantly higher in cLBP [11.7 (SD = 2.4)] than in CTR group [9.9 (SD = 1.1); P = 0.01]. Pain intensity did not significantly increase over time (P = 0.21).

Conclusions

These results do not support the hypothesis of a less efficient walking pattern in patients with cLBP and imply that high walking speeds are well tolerated by patients with moderately disabling cLBP.

Keywords

Biomechanics Gait Human locomotion Inverted pendulum Pain 

Abbreviations

BMI

Body mass index

cLBP

Chronic low back pain

COM

Centre of body mass

CTR

Control

Cw

Energy cost of walking

IPAQ

International physical activity questionnaire

ODI

Oswestry disability index

OWS

Optimal walking speed

PWS

Preferred walking speed

TSK

Tampa scale for kinesiophobia

VAS

Visual analogue scale

\(\dot{V}{\text{CO}}_{ 2}\)

Carbon dioxide output

\(\dot{V}{\text{O}}_{ 2}\)

Oxygen uptake

Wext

External mechanical work

Wint

Internal mechanical work

Wtot

Total mechanical work

Notes

Acknowledgments

Financial compensation to participants was funded by the Service of Rheumatology. No other funding was received for this work.

Compliance with the ethical standards

Conflicts of interest

The authors have nothing to disclose.

References

  1. Åstrand P-O, Rodahl KR (1986) Textbook of work physiology : physiological bases of exercise. McGraw-Hill series in health education, physical education, and recreation. McGraw-Hill, New YorkGoogle Scholar
  2. Barker KL, Dawes H, Hansford P, Shamley D (2003) Perceived and measured levels of exertion of patients with chronic back pain exercising in a hydrotherapy pool. Arch Phys Med Rehabil 84(9):1319–1323. pii: S0003999303002661Google Scholar
  3. Beijersbergen CM, Granacher U, Vandervoort AA, DeVita P, Hortobagyi T (2013) The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Age Res Rev 12(2):618–627. doi: 10.1016/j.arr.2013.03.001 CrossRefGoogle Scholar
  4. Bernardi M, Macaluso A, Sproviero E, Castellano V, Coratella D, Felici F, Rodio A, Piacentini MF, Marchetti M, Ditunno JF Jr (1999) Cost of walking and locomotor impairment. J Electromyogr Kinesiol 9(2):149–157CrossRefPubMedGoogle Scholar
  5. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381CrossRefPubMedGoogle Scholar
  6. Browning RC, Baker EA, Herron JA, Kram R (2006) Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol 100(2):390–398CrossRefPubMedGoogle Scholar
  7. Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262(3):639–657PubMedCentralCrossRefPubMedGoogle Scholar
  8. Crosbie J, de Faria Negrao Filho R, Nascimento DP, Ferreira P (2013) Coordination of spinal motion in the transverse and frontal planes during walking in people with and without recurrent low back pain. Spine 38(5):E286–E292. doi: 10.1097/BRS.0b013e318281de28 CrossRefPubMedGoogle Scholar
  9. Detrembleur C, van den Hecke A, Dierick F (2000) Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait. Gait Posture 12(3):243–250CrossRefPubMedGoogle Scholar
  10. Gauthier AP, Lariviere M, Young N (2009) Psychometric properties of the IPAQ: a validation study in a sample of northern Franco-Ontarians. J Phys Act Health 6(1):S54–S60PubMedGoogle Scholar
  11. Griffin DW, Harmon DC, Kennedy NM (2012) Do patients with chronic low back pain have an altered level and/or pattern of physical activity compared to healthy individuals? A systematic review of the literature. Physiotherapy 98(1):13–23. doi: 10.1016/j.physio.2011.04.350 CrossRefPubMedGoogle Scholar
  12. Hodges PW (2011) Pain and motor control: from the laboratory to rehabilitation. J Electromyogra Kinesiol Off J Int Soc Electrophysiol Kinesiol 21(2):220–228. doi: 10.1016/j.jelekin.2011.01.002 CrossRefGoogle Scholar
  13. Hoy D, Brooks P, Blyth F, Buchbinder R (2010) The Epidemiology of low back pain. Best Pract Res Clin Rheumatol 24(6):769–781. doi: 10.1016/j.berh.2010.10.002 CrossRefPubMedGoogle Scholar
  14. Jasiewicz JM, Allum JH, Middleton JW, Barriskill A, Condie P, Purcell B, Li RC (2006) Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4):502–509. doi: 10.1016/j.gaitpost.2005.12.017 CrossRefPubMedGoogle Scholar
  15. Kuo AD, Donelan JM (2010) Dynamic principles of gait and their clinical implications. Phys Ther 90(2):157–174. doi: 10.2522/ptj.20090125 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Lamoth CJ, Meijer OG, Wuisman PI, van Dieen JH, Levin MF, Beek PJ (2002) Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine 27(4):E92–E99CrossRefPubMedGoogle Scholar
  17. Lamoth CJ, Daffertshofer A, Meijer OG, Lorimer Moseley G, Wuisman PI, Beek PJ (2004) Effects of experimentally induced pain and fear of pain on trunk coordination and back muscle activity during walking. Clin Biomech 19(6):551–563. doi: 10.1016/j.clinbiomech.2003.10.006 CrossRefGoogle Scholar
  18. Lamoth CJ, Daffertshofer A, Meijer OG, Beek PJ (2006a) How do persons with chronic low back pain speed up and slow down? Trunk-pelvis coordination and lumbar erector spinae activity during gait. Gait Posture 23(2):230–239. doi: 10.1016/j.gaitpost.2005.02.006 CrossRefPubMedGoogle Scholar
  19. Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ (2006b) Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J 15(1):23–40. doi: 10.1007/s00586-004-0825-y PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lamoth CJ, Stins JF, Pont M, Kerckhoff F, Beek PJ (2008) Effects of attention on the control of locomotion in individuals with chronic low back pain. J Neuroeng Rehab 5:13. doi: 10.1186/1743-0003-5-13 CrossRefGoogle Scholar
  21. Lariviere C, Das RA, Arsenault AB, Nadeau S, Plamondon A, Vadeboncoeur R (2010) Specificity of a back muscle exercise machine in healthy and low back pain subjects. Med Sci Sports Exerc 42(3):592–599. doi: 10.1249/MSS.0b013e3181b96029 CrossRefPubMedGoogle Scholar
  22. Lee CE, Simmonds MJ, Etnyre BR, Morris GS (2007) Influence of pain distribution on gait characteristics in patients with low back pain: part 1: vertical ground reaction force. Spine 32(12):1329–1336. doi: 10.1097/BRS.0b013e318059af3b CrossRefPubMedGoogle Scholar
  23. Leeuw M, Goossens ME, Linton SJ, Crombez G, Boersma K, Vlaeyen JW (2007) The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J Behav Med 30(1):77–94. doi: 10.1007/s10865-006-9085-0 CrossRefPubMedGoogle Scholar
  24. Mahaudens P, Detrembleur C, Mousny M, Banse X (2009) Gait in adolescent idiopathic scoliosis: energy cost analysis. Eur Spine J 18(8):1160–1168. doi: 10.1007/s00586-009-1002-0 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C (2003) Energy cost of walking and gait instability in healthy 65- and 80-year-olds. J Appl Physiol 95(6):2248–2256. doi: 10.1152/japplphysiol.01106.2002 CrossRefPubMedGoogle Scholar
  26. Martin PE, Rothstein DE, Larish DD (1992) Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol 73(1):200–206PubMedGoogle Scholar
  27. Meichtry A, Romkes J, Gobelet C, Brunner R, Muller R (2007) Criterion validity of 3D trunk accelerations to assess external work and power in able-bodied gait. Gait Posture 25(1):25–32. doi: 10.1016/j.gaitpost.2005.12.016 CrossRefPubMedGoogle Scholar
  28. Miller RP, Kori S, Todd D (1991) The Tampa Scale: a measure of kinesiophobia. Clin J Pain 7(1):51–52CrossRefGoogle Scholar
  29. Nardello F, Ardigo LP, Minetti AE (2011) Measured and predicted mechanical internal work in human locomotion. Hum Mov Sci 30(1):90–104. doi: 10.1016/j.humov.2010.05.012 CrossRefPubMedGoogle Scholar
  30. Osthus H, Cziske R, Jacobi E (2006) Cross-cultural adaptation of a German version of the Oswestry Disability Index and evaluation of its measurement properties. Spine 31(14):E448–E453. doi: 10.1097/01.brs.0000222054.89431.42 CrossRefPubMedGoogle Scholar
  31. Panjabi MM (2003) Clinical spinal instability and low back pain. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol 13(4):371–379. pii: S1050641103000440Google Scholar
  32. Payares K, Lugo LH, Morales V, Londono A (2011) Validation in Colombia of the Oswestry disability questionnaire in patients with low back pain. Spine 36(26):E1730–E1735. doi: 10.1097/BRS.0b013e318219d184 CrossRefPubMedGoogle Scholar
  33. Peyrot N, Thivel D, Isacco L, Morin JB, Duche P, Belli A (2009) Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? J Appl Physiol 106(6):1763–1770. doi: 10.1152/japplphysiol.91240.2008 CrossRefPubMedGoogle Scholar
  34. Price DD, McGrath PA, Rafii A, Buckingham B (1983) The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 17(1):45–56CrossRefPubMedGoogle Scholar
  35. Simmonds MJ, Derghazarian T (2009) Lower Back Pain Syndrome. ACSM’s exercise management for persons with chronic diseases and disabilities, 3rd edn. Human Kinetics, Champaign, pp 266–269Google Scholar
  36. Simmonds MJ, Lee CE, Etnyre BR, Morris GS (2012) The influence of pain distribution on walking velocity and horizontal ground reaction forces in patients with low back pain. Pain Res Treat 2012:214980. doi: 10.1155/2012/214980 PubMedCentralPubMedGoogle Scholar
  37. Taylor NF, Evans OM, Goldie PA (2003) The effect of walking faster on people with acute low back pain. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervical Spine Res Soc 12(2):166–172. doi: 10.1007/s00586-002-0498-3 Google Scholar
  38. Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre of gravity of the human body during level walking II Lower limb amputees. Clin Biomech 13(2):83–90CrossRefGoogle Scholar
  39. Tonosu J, Takeshita K, Hara N, Matsudaira K, Kato S, Masuda K, Chikuda H (2012) The normative score and the cut-off value of the Oswestry Disability Index (ODI). European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 21(8):1596–1602. doi: 10.1007/s00586-012-2173-7 CrossRefGoogle Scholar
  40. van den Hoorn W, Bruijn SM, Meijer OG, Hodges PW, van Dieen JH (2012) Mechanical coupling between transverse plane pelvis and thorax rotations during gait is higher in people with low back pain. J Biomech 45(2):342–347. doi: 10.1016/j.jbiomech.2011.10.024 CrossRefPubMedGoogle Scholar
  41. van der Hulst M, Vollenbroek-Hutten MM, Rietman JS, Hermens HJ (2010a) Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: support of the “guarding” hypothesis? J Electromyogr Kinesiol 20(1):31–38. doi: 10.1016/j.jelekin.2009.03.009 CrossRefPubMedGoogle Scholar
  42. van der Hulst M, Vollenbroek-Hutten MM, Rietman JS, Schaake L, Groothuis-Oudshoorn KG, Hermens HJ (2010b) Back muscle activation patterns in chronic low back pain during walking: a “guarding” hypothesis. Clin J Pain 26(1):30–37. doi: 10.1097/AJP.0b013e3181b40eca CrossRefPubMedGoogle Scholar
  43. Vlaeyen JW, Linton SJ (2012) Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain 153(6):1144–1147. doi: 10.1016/j.pain.2011.12.009 CrossRefPubMedGoogle Scholar
  44. Vlaeyen JW, Kole-Snijders AM, Boeren RG, van Eek H (1995) Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain 62(3):363–372CrossRefPubMedGoogle Scholar
  45. Vogler D, Paillex R, Norberg M, de Goumoens P, Cabri J (2008) Cross-cultural validation of the Oswestry disability index in French. Ann Readapt Med Phys 51(5):379–385CrossRefPubMedGoogle Scholar
  46. Vogt L, Pfeifer K, Banzer W (2003) Neuromuscular control of walking with chronic low-back pain. Man Ther 8(1):21–28CrossRefPubMedGoogle Scholar
  47. Wallbom AS, Geisser ME, Haig AJ, Yamakawa K, Montgomery D (2002) Concordance between rating of perceived exertion and function in persons with chronic, disabling back pain. J Occup Rehabil 12(2):93–98CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yves Henchoz
    • 1
  • Nicola Soldini
    • 2
  • Nicolas Peyrot
    • 3
  • Davide Malatesta
    • 2
    • 4
    Email author
  1. 1.Service of RheumatologyLausanne University HospitalLausanneSwitzerland
  2. 2.Institute of Sport Sciences of the University of Lausanne (UNIL-ISSUL)LausanneSwitzerland
  3. 3.University of La Réunion, UFR SHE, CURAPS-DIMPSLe TamponFrance
  4. 4.Department of Physiology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland

Personalised recommendations