Skip to main content
Log in

The effect of concurrent training organisation in youth elite soccer players

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study compared the adaptive responses to two concurrent training programmes frequently used in professional soccer.

Methods

Fifteen youth soccer players (17.3 ± 1.6 years, 1.82 ± 0.06 m, 77.0 ± 7.3 kg; VO2 peak, 62.0 ± 4.7 ml−1 kg−1 min−1) who compete in the English Premier League volunteered for this study. In addition to completing their habitual training practices, the participants were asked to alter the organisation concurrent training by performing strength (S) training either prior to (S + E, n = 8) or after (E + S, n = 7) soccer-specific endurance training (E) 2d wk−1 for 5 wk−1.

Results

With the exception of 30 m sprint, IMVC PF, quadriceps strength (60°/sCON, 180°/sCON, 120°/sECC) pooled data revealed training effects across all other performances measures (P < 0.05). Whilst ANCOVA indicated no significant interaction effects for training condition, the difference between the means divided by the pooled standard deviation demonstrated large effect sizes in the E + S condition for in HBS 1-RM [S + E vs E + S; −0.54 (9.6 %) vs −1.79 (19.6 %)], AoP-M [−0.72 (7.9 %) vs −1.76 (14.4 %)], SJ [−0.56, (4.4 %), vs −1.08, (8.1 %)], IMVC-LR; [−0.50, (20.3 %) vs −1.05 (27.3 %)], isokinetic hamstring strength 60°/s CON [−0.64, (12.2 %) vs −0.95 (19.2 %)], 120°/sECC [−0.78 (27.9 %) vs −1.55 (23.3 %)] and isokinetic quadriceps strength 180°/s CON [−0.23 (2.5 %) vs −1.52 (13.2 %)].

Conclusion

Results suggest the organisation of concurrent training, recovery time allocated between training bouts and the availability nutrition may be able to modulate small but clinically significant changes in physical performance parameters associated with match-play. This may have practical implications for practitioners who prescribe same day concurrent training protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

S + E :

Strength-endurance scenario

E + S :

Endurance-strength scenario

HBS 1RM:

Half back squat 1-RM

IMVC PF:

Isometric MVC peak force

IMVC LR:

Isometric MVC loading rate

Quad Con60:

Concentric quadriceps (60°/s)

Quad Con180:

Concentric quadriceps (180°/s)

Quad Ecc120:

Eccentric quadriceps (120°/s)

Ham Con60:

Concentric hamstrings (60°/s)

Ham Con180:

Concentric hamstrings (180°/s)

Ham Ecc120:

Eccentric hamstrings (120°/s)

SJ:

Squat Jump

CMJ:

Countermovement jump

MT-D:

Muscle thickness (distal)

MT-M:

Muscle thickness (mid)

MT-P:

Muscle thickness (proximal)

AoP-M:

Angle of pennation (Mid)

FL-M:

Fascicule length (Mid)

References

  • Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534(2):613–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe T, Kumagai K, Brechue WF (1999) Muscle fascicle length is greater in sprinters than long-distance runners (Abstract). Med Sci Sports Exerc 31(Suppl. 5):S328

    Google Scholar 

  • Ambrosoli G, Cerretelli P (1970) The yield of resynthesis of high-energy phosphates (ATP + PC) in the course of anaerobic restoration. Boll Soc Ital Biol Sper 4(15):667–668

    Google Scholar 

  • Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-Pgc-1alpha Or Pkb-Tsc2-MTOR signaling can explain specific adaptive responses to endurance or resistance-training-like electrical muscle stimulation. Faseb J 19:786–788

    CAS  PubMed  Google Scholar 

  • Baar K (2014) Using molecular biology to maximize concurrent training. Sports Med 44(2):117–125  

    Article  PubMed Central  Google Scholar 

  • Bangsbo J, Mohr M, Krustrup P (2006) Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 24(7):665–674

    Article  PubMed  Google Scholar 

  • Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP (2012) Matched work high-intensity interval and continuous running induce similar increases in PGC-1alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol 112(7):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Bell G, Petersen S, Quinney H, Wenger H (1988) Sequencing of endurance and high-velocity strength training. Can J Spt Sci 13:214–219

  • Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HA (2000) Effect of concurrent strength and endurance-training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol 81: 418–427

    Article  CAS  PubMed  Google Scholar 

  • Blazevich AJ (2006) Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med 36(12):1003–1017

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Gill ND, Bronks R, Newton RU (2003) Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Ex 35(12):2013–2022

    Article  Google Scholar 

  • Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575

    Article  PubMed  Google Scholar 

  • Carroll TJ, Abernethy PJ, Logan PA, Barber M, Mceniery MT (1998) Resistance-training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Applied Physiol 78:270–275

  • Chtara M, Chamari K, Chaouachi M, Chaouachi A, Koubaa D, Feki Y, Millet GP, Amri M (2005) Effects of intra-session concurrent endurance and strength-training sequence on aerobic performance and capacity. Br J Sports Med 39:555–560

  • Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, Laursen PB (2008) Effect of concurrent endurance and circuit resistance-training sequence on muscular strength and power development. J Strength Cond Res 22:1037–1045

  • Churchley EG, Coffey VG, Pedersen DJ, Shield A, Carey KA, Cameron-Smith D, Hawley JA (2007) Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol 102(4):1604–1611

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Pilegaard H, Garnham AP, O’Brien BJ, Hawley JA (2009) Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol 106(4):1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Collins MA, Snow TK (1993) Are adaptations to combined endurance and strength-training affected by the sequence of training? J Sports Sci 11:485–491

  • Craig BW, Lucas J, Pohlman R, Stelling H (1991) The effects of running, weightlifting and a combination of both on growth hormone release. J Strength Cond Res 5:198–203

  • Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S (2005) Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 99(3):950–956

    Article  CAS  PubMed  Google Scholar 

  • Docherty D, Sporer B (2000) A proposed model for examining the interference phenomenon between concurrent aerobic and strength-training. Sports Med 30:385–394

  • Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB (2009) Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signalling. J Appl Physiol 106(4):1374–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudley GA, Fleck SJ (1987) Strength and endurance-training. Are they mutually exclusive? Sports Med 4:79–85

    Article  CAS  PubMed  Google Scholar 

  • Enright K (2014) The impact of concurrent-training on the physiological adaptations to sport specific exercise in elite footballers. Ph.D. thesis. Liverpool John Moores University, UK

  • Figoni SF, Morris AF (1984) Effects of knowledge of results on reciprocal, isokinetic strength and fatigue. Med Sci Sports Phys Ther 16(2):167

    Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

  • Fukunaga T, Kawakami Y, Kuno S, Funato K, Fukashiro S (1997) Muscle architecture and function in humans. J Biomech 30(5):457–463

    Article  CAS  PubMed  Google Scholar 

  • Fyfe JJ, Bishop DJ, Stepto NK (2014) Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 44(6):743–762

    Article  PubMed  Google Scholar 

  • Gravelle BL, Blessing DL (2000) Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res 14(1):5–13

  • Haff GG, Lehmkuhl MJ, McCoy LB, Stone MH (2003) Carbohydrate supplementation and strength training. J Strength Cond Res 17(1):187–196

    PubMed  Google Scholar 

  • Hanssen KE, Kvamme NH, Nilsen TS, Ronnestad B, Ambjornsen IK, Norheim F, Kadi F, Hallen J, Drevon CA, Raastad T (2012) The effect of strength-training volume on satellite cells, myogenic regulatory factors, and growth factors. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2012.01452.x

  • Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34(3):355–361

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Tipton KD, Millard-Stafford ML (2006) Promoting training adaptations through nutritional interventions. J Sports Sci 24(7):709–721

    Article  PubMed  Google Scholar 

  • Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45:255–263

  • Hill-Haas S, Coutts A, Rowsell G, Dawson B (2008) Variability of acute physiological responses and performance profiles of youth soccer players in small-sided games. J Med Sport 11:487–490

    Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13

    Article  PubMed  Google Scholar 

  • Howarth KR, Phillips SM, MacDonald MJ, Richards D, Moreau NA, Gibala MJ (2010) Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. J Appl Physiol 109(2):431–428

    Article  CAS  PubMed  Google Scholar 

  • Iga J, George K, Lees A, Reilly T (2009) Cross-sectional investigation of indices of isokinetic leg strength in youth soccer players and untrained individuals. Scand J Med Sci Sports 19(5):714–719

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup A (2014) A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med 44(1):25–33

    Article  PubMed Central  Google Scholar 

  • Kanehisa H, Muraoka Y, Kawakami Y, Fukunaga T (2003) Fascicle arrangements of vastus lateralis and gastrocnemius muscles in highly trained soccer players and swimmers of both genders. Int J Sports Med 24(2):90–95

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Abe T, Kuno S-Y, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol 72:37–43

    Article  CAS  Google Scholar 

  • Kearns CF, Isokawa M, Abe T (2001) Architectural characteristics of dominant leg muscles in junior soccer players. Eur J Appl Physiol 85(3–4):240–243

    Article  CAS  PubMed  Google Scholar 

  • Kellis E, Galsnis N, Natsis K, Kapetanos G (2009) Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech 42:2549–2554

    Article  PubMed  Google Scholar 

  • Kim SG, Hoffman GR, Poulogiannis G (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49:172–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 88:811–816

    CAS  PubMed  Google Scholar 

  • Lepers R, Pousson ML, Maffiuletti NA, Martin A, Van Hoecke J (2000) The effects of a prolonged running exercise on strength characteristics. Inter J Sports Med 21: 275–280

  • Leveritt M, Abernethy PJ (1999) Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res 13:47–51

    Google Scholar 

  • Little T, Williams AG (2006) Suitability of soccer training drills for endurance training. J Strength Cond Res 20(2):316–319

    PubMed  Google Scholar 

  • Little T, Williams AG (2007) Measures of exercise intensity during soccer training drills with professional soccer players. J Strength Cond Res 21:367–371

  • Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA (2012) Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Ex 44:1680–1688

    Article  CAS  Google Scholar 

  • Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA (2013) Aerobic exercise does not compromise muscle hypertrophy response to short-term strength training. J Appl Physiol 114:81–89

    Article  PubMed  Google Scholar 

  • McCarthy JP, Pozniak MA, Agre JC (2002) Neuromuscular adaptations to concurrent strength and endurance-training. Med Sci Sports Exerc 34:511–519

  • McGawley K, Andersson PI (2013) The order of concurrent-training does not affect soccer-related performance adaptations. Inter J Sports Med 34:983–990

  • MacKenzie MG, Hamilton DL, Murray JT (2009) mVps34 is activated following high-resistance contractions. J Physiol 587:253–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohr M, Krustrup P, Bangsbo J (2003) Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 21(7):519–528

    Article  PubMed  Google Scholar 

  • Morgans R, Orme P, Anderson L, Drust B, Morton J (2014) An intensive winter fixture schedule induces a transient fall in Salivary IgA in English Premier League Soccer Players. Res Sports Med 22(4):346–354

    Article  PubMed  Google Scholar 

  • Morton JP, Atkinson G, MacLaren DP, Cable NT, Gilbert G, Broome C, McArdle A, Drust B (2005) Reliability of maximal muscle force and voluntary activation as markers of exercise-induced muscle damage. Eur J Appl Physiol 94(5–6):541–548

    Article  PubMed  Google Scholar 

  • Phillips SM (2012) Dietary protein requirements and adaptive advantages in athletes. Br J Nutr 108(S2):S158–S167

    Article  CAS  PubMed  Google Scholar 

  • Saltin B (1973) Metabolic fundamentals in exercise. Med Sci Sports 5:137–146

    CAS  PubMed  Google Scholar 

  • Siegl P, Schultz K (1984) The Borg Scale as an instrument for the detection of subjectively experienced stress in industrial medicine laboratory and field studies. Z Gesamte Hyg 30(7):383–386

    CAS  PubMed  Google Scholar 

  • Small K, McNaughton L, Greig M, et al. (2009) Effect of timing of eccentric hamstring strengthening exercises during soccer training: implications for muscle fatiguability. J Strength Cond Res 23(4):1077–1083

  • Stepto NK, Coffey V, Canny BJ, Ponnampolam AP, Clark SA, Hawley JA (2005) Differential global gene expression profiles from chronically endurance- and strength-trained athletes. Faseb J 19(4):A115

    Google Scholar 

  • Tesch PA, Colliander EB, Kaiser P (1986) Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol 55(4):362–366

    Article  CAS  PubMed  Google Scholar 

  • Tipton KD, Ferrando AA (2008) Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem 44:85–98

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Marin PJ, Rhea MR, Wilson SMC, Loenneke JP, anderson JC (2012) Concurrent-training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26:2293–2307

  • Wisloff U, Helgerud J, Hoff J (1998) Strength and endurance of elite soccer players. Med Sci Sports Ex 30(3):462–467

    Article  CAS  Google Scholar 

  • Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J (2004) Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med 38(3):285–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wojtaszewski JF, Nielsen P, Hansen BF (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodard CM, James MK, Messier SP (1999) Computational methods used in the determination of loading rate: experimental and clinical implications. J Appl Biomech 15(4):404–417

    Google Scholar 

Download references

Acknowledgments

This project was internally funded by the Wolverhampton Wanderers Football Club, England. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Enright.

Additional information

Communicated by Peter Krustrup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enright, K., Morton, J., Iga, J. et al. The effect of concurrent training organisation in youth elite soccer players. Eur J Appl Physiol 115, 2367–2381 (2015). https://doi.org/10.1007/s00421-015-3218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3218-5

Keywords

Navigation