Skip to main content

Muscle activation during three sets to failure at 80 vs. 30 % 1RM resistance exercise

Abstract

Purpose

The purpose of this study was to investigate electromyographic amplitude (EMG AMP), EMG mean power frequency (MPF), exercise volume (VOL), total work and muscle activation (iEMG), and time under concentric load (TUCL) during, and muscle cross-sectional area (mCSA) before and after 3 sets to failure at 80 vs. 30 % 1RM resistance exercise.

Methods

Nine men (mean ± SD, age 21.0 ± 2.4 years, resistance training week−1 6.0 ± 3.7 h) and 9 women (age 22.8 ± 3.8 years, resistance training week−1 3.4 ± 3.5 h) completed 1RM testing, followed by 2 experimental sessions during which they completed 3 sets to failure of leg extension exercise at 80 or 30 % 1RM. EMG signals were collected to quantify EMG AMP and MPF during the initial, middle, and last repetition of each set. Ultrasound was used to assess mCSA pre- and post-exercise, and VOL, total work, iEMG, and TUCL were calculated.

Results

EMG AMP remained greater at 80 % than 30 % 1RM across all reps and sets, despite increasing 74 and 147 % across reps at 80 and 30 % 1RM, respectively. EMG MPF decreased across reps at 80 and 30 % 1RM, but decreased more and was lower for the last reps at 30 than 80 % 1RM (71.6 vs. 78.1 % MVIC). mCSA increased more from pre- to post-exercise for 30 % (20.2–24.1 cm2) than 80 % 1RM (20.3–22.8 cm2). VOL, total work, iEMG and TUCL were greater for 30 % than 80 % 1RM.

Conclusion

Muscle activation was greater at 80 % 1RM. However, differences in volume, metabolic byproduct accumulation, and muscle swelling may help explain the unexpected adaptations in hypertrophy vs. strength observed in previous studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

1RM:

One repetition maximum

ANOVA:

Analysis of variance

EI:

Echo intensity

EMG AMP:

Electromyographic amplitude

EMG MPF:

Electromyographic mean power frequency

iEMG:

Total integrated electromyographic amplitude

mCSA:

Muscle cross-sectional area

MVIC:

Maximal voluntary isometric contraction

RF:

Rectus femoris

TUCL:

Time under concentric load

US:

Ultrasound

VL:

Vastus lateralis

VM:

Vastus medialis

VOL:

Volume

References

  • Ahtiainen JP, Hoffren M, Hulmi JJ, Pietikainen M, Mero AA, Avela J, Hakkinen K (2010) Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur J Appl Physiol 108:273–279. doi:10.1007/s00421-009-1211-6

    Article  PubMed  Google Scholar 

  • Akima H, Saito A (2013) Activation of quadriceps femoris including vastus intermedius during fatiguing dynamic knee extensions. Eur J Appl Physiol 113:2829–2840. doi:10.1007/s00421-013-2721-9

    Article  PubMed  Google Scholar 

  • Basmajian JV, De Luca CJ (1985) Muscles alive : their functions revealed by electromyography, 5th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Beck TW, Housh TJ (2008) Use of electromyography in studying human movement. In: Hong Y, Bartlett R (eds) Routledge handbook of biomechanics and human movement. Routledge, New York, pp 214–230

    Google Scholar 

  • Brody LR, Pollock MT, Roy SH, De Luca CJ, Celli B (1991) pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol (1985) 71:1878–1885

    CAS  Google Scholar 

  • Burd NA et al (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588:3119–3130. doi:10.1113/jphysiol.2010.192856

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Burd NA et al (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033. doi:10.1371/journal.pone.0012033

    PubMed Central  Article  PubMed  Google Scholar 

  • Burd NA et al (2012a) Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol 590:351–362. doi:10.1113/jphysiol.2011.221200

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Burd NA, Mitchell CJ, Churchward-Venne TA, Phillips SM (2012b) Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Appl Physiol Nutr Metab 37:551–554. doi:10.1139/h2012-022

    CAS  Article  PubMed  Google Scholar 

  • Burd NA, Moore DR, Mitchell CJ, Phillips SM (2013) Big claims for big weights but with little evidence. Eur J Appl Physiol 113:267–268. doi:10.1007/s00421-012-2527-1

    Article  PubMed  Google Scholar 

  • Carpinelli RN (2008) The size principle and a critical analysis of the unsubstantiated heavier-is-better recommendation for resistance training. J Exerc Sci Fitness 6:67–86

    Google Scholar 

  • Conwit RA, Stashuk D, Suzuki H, Lynch N, Schrager M, Metter EJ (2000) Fatigue effects on motor unit activity during submaximal contractions. Arch Phys Med Rehabil 81:1211–1216. doi:10.1053/apmr.2000.6975

    CAS  Article  PubMed  Google Scholar 

  • Cook SB, Murphy BG, Labarbera KE (2013) Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc 45:67–74. doi:10.1249/MSS.0b013e31826c6fa8

    Article  PubMed  Google Scholar 

  • Diemont B, Figini MM, Orizio C, Perini R, Veicsteinas A (1988) Spectral analysis of muscular sound at low and high contraction level. Int J Biomed Comput 23:161–175

    CAS  Article  PubMed  Google Scholar 

  • Fry CS et al (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985) 108:1199–1209. doi:10.1152/japplphysiol.01266.2009

    CAS  Article  Google Scholar 

  • Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S (1997) Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol (1985) 82:354–358

    CAS  Google Scholar 

  • Fumarola C, La Monica S, Guidotti GG (2005) Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol 204:155–165. doi:10.1002/jcp.20272

    CAS  Article  PubMed  Google Scholar 

  • Garber CE et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  • Haussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W (1990) Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 272:239–242

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  • Herda TJ, Housh TJ, Fry AC, Weir JP, Schilling BK, Ryan ED, Cramer JT (2010) A noninvasive, log-transform method for fiber type discrimination using mechanomyography. J Electromyogr Kinesiol 20:787–794. doi:10.1016/j.jelekin.2010.01.004

    Article  PubMed  Google Scholar 

  • Hermens HJ, Bruggen TA, Baten CT, Rutten WL, Boom HB (1992) The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties. J Electromyogr Kinesiol 2:15–25. doi:10.1016/1050-6411(92)90004-3

    CAS  Article  PubMed  Google Scholar 

  • Hermens HJ et al (1999) SENIAM 8: European recommendations for surface electromyography. Roessngh Research and Development, The Netherlands

    Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277. doi:10.1152/physrev.00037.2007

    CAS  Article  PubMed  Google Scholar 

  • Jenkins ND et al (2015) Test–retest reliability of single transverse versus panoramic ultrasound imaging for muscle size and echo intensity of the biceps brachii. Ultrasound Med Biol. doi:10.1016/j.ultrasmedbio.2015.01.017

    PubMed  Google Scholar 

  • Korhonen MT et al (2009) Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc 41:844–856. doi:10.1249/MSS.0b013e3181998366

    Article  PubMed  Google Scholar 

  • Kwatny E, Thomas DH, Kwatny HG (1970) An application of signal processing techniques to the study of myoelectric signals. IEEE Trans Biomed Eng 17:303–313

    CAS  Article  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Wilson JM, Bemben MG (2011) Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses 77:748–752. doi:10.1016/j.mehy.2011.07.029

    CAS  Article  PubMed  Google Scholar 

  • Low SY, Rennie MJ, Taylor PM (1997) Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J 11:1111–1117

    CAS  PubMed  Google Scholar 

  • Marsden CD, Meadows JC, Merton PA (1983) “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. Adv Neurol 39:169–211

    CAS  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113:71–77. doi:10.1152/japplphysiol.00307.2012

    PubMed Central  CAS  Article  Google Scholar 

  • Netreba A et al (2013) Responses of knee extensor muscles to leg press training of various types in human. Ross Fiziol Zh Im I M Sechenova 99:406–416

    CAS  PubMed  Google Scholar 

  • NSCA (2008) Essentials of strength training and conditioning, 3rd edn. Human Kinetics, Champaign

    Google Scholar 

  • Ogasawara R, Loenneke JP, Thiebaud RS, Abe T (2013) Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med 4:114–121

    Article  Google Scholar 

  • Popov DV et al (2006) Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Fiziol Cheloveka 32:121–127

    CAS  PubMed  Google Scholar 

  • Popov DV et al (2015) Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve 51:432–442. doi:10.1002/mus.24314

    Article  Google Scholar 

  • Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24:2857–2872. doi:10.1519/JSC.0b013e3181e840f3

    Article  PubMed  Google Scholar 

  • Schoenfeld BJ, Contreras B, Willardson JM, Fontana F, Tiryaki-Sonmez G (2014) Muscle activation during low- versus high-load resistance training in well-trained men. Eur J Appl Physiol 114:2491–2497. doi:10.1007/s00421-014-2976-9

    Article  PubMed  Google Scholar 

  • Schoenfeld BJ, Peterson MD, Ogborn D, Contreras B, Sonmez GT (2015) Effects of low- versus high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res. doi:10.1519/JSC.0000000000000958

    Google Scholar 

  • Schuenke MD, Herman J, Staron RS (2013) Preponderance of evidence proves “big” weights optimize hypertrophic and strength adaptations. Eur J Appl Physiol 113:269–271. doi:10.1007/s00421-012-2528-0

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    CAS  Article  PubMed  Google Scholar 

  • Sjogaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol 248:R190–R196

    CAS  PubMed  Google Scholar 

  • Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60:71–79

    CAS  Article  PubMed  Google Scholar 

  • Takarada Y, Tsuruta T, Ishii N (2004) Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54:585–592

    Article  PubMed  Google Scholar 

  • Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E (2010) The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol 110:835–843. doi:10.1007/s00421-010-1527-2

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Noelle M. Yeo and Jessie M. Miller for their help with data collection. This study was supported in part by the University of Nebraska Agricultural Research Division with funds provided through the Hatch Act (Agency: United States Department of Agriculture, National Institute of Food and Agriculture; Accession No.: 1000080; Project No.: NEB-36-078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel T. Cramer.

Ethics declarations

The authors have no perceived conflicts of interest to declare.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jenkins, N.D.M., Housh, T.J., Bergstrom, H.C. et al. Muscle activation during three sets to failure at 80 vs. 30 % 1RM resistance exercise. Eur J Appl Physiol 115, 2335–2347 (2015). https://doi.org/10.1007/s00421-015-3214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3214-9

Keywords

  • Electromyography
  • Skeletal muscle
  • Muscle fatigue
  • Muscle size
  • Resistance training intensity
  • Exercise volume