Skip to main content
Log in

The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Transcranial direct current stimulation (tDCS) provides a new exciting means to investigate the role of the brain during exercise. However, this technique is not widely used in exercise science, with little known regarding effective electrode montages. This study investigated whether tDCS of the motor cortex (M1) would elicit an analgesic response to exercise-induced pain (EIP).

Methods

Nine participants completed a VO2max test and three time to exhaustion (TTE) tasks on separate days following either 10 min 2 mA tDCS of the M1, a sham or a control. Additionally, seven participants completed 3 cold pressor tests (CPT) following the same experimental conditions (tDCS, SHAM, CON). Using a well-established tDCS protocol, tDCS was delivered by placing the anodal electrode above the left M1 with the cathodal electrode above dorsolateral right prefrontal cortex. Gas exchange, blood lactate, EIP and ratings of perceived exertion (RPE) were monitored during the TTE test. Perceived pain was recorded during the CPT.

Results

During the TTE, no significant differences in time to exhaustion, RPE or EIP were found between conditions. However, during the CPT, perceived pain was significantly (P < 0.05) reduced in the tDCS condition (7.4 ± 1.2) compared with both the CON (8.6 ± 1.0) and SHAM (8.4 ± 1.3) conditions.

Conclusion

These findings demonstrate that stimulation of the M1 using tDCS does not induce analgesia during exercise, suggesting that the processing of pain produced via classic measures of experimental pain (i.e., a CPT) is different to that of EIP. These results provide important methodological advancement in developing the use of tDCS in exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

B[La−1]:

Blood lactate concentration

CON:

Control condition

CPT:

Cold pressor test

DLPFC:

Dorsolateral prefrontal cortex

EIP:

Exercise-induced pain

EXP:

Experimental condition (tDCS intervention)

M1:

Motor cortex

RPE:

Rating of perceived exertion

tDCS:

Transcranial direct current stimulation

TTE:

Time to exhaustion

References

  • Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000:40–56

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 15:271–283

    Article  Google Scholar 

  • Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2011) Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol (1)589: 299–309

  • Bachmann CG, Muschinsky S, Nitsche MA, Rolke R, Magerl W, Treede RD, Paulus W, Happe S (2010) Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin Neurophysiol 212:2083–2089

    Article  Google Scholar 

  • Boggio PS, Zaghi S, Lopes M, Fregni F (2008) Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 15(10):1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Boggio PS, Zaghi S, Fregni F (2009) Modulation of emotions associated with the images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologica 47:212–217

    Article  Google Scholar 

  • Borg GA (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign

    Google Scholar 

  • Brodal A (1981) Neurological anatomy, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Chen AC, Rappelsberger P, Filz O (1998) Topology of EEG coherence changes may reflect differential neural network activation in cold and pain perception. Brain Topogr 11(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Cogiamanian F, Marceglia S, Ardolin G, Barbieri S, Priori A (2007) Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci 26:242–24910

    Article  CAS  PubMed  Google Scholar 

  • Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M (1997) Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29(8):999–1012

    Article  CAS  PubMed  Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 22–29:372

    Google Scholar 

  • Foster J, Taylor L, Chrismas BC, Watkins SL, Mauger AR (2014) The influence of acetaminophen on repeated sprint cycling performance. Eur J Appl Physiol 114(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • García-Larrea L, Peyron R, Mertens P, Grégoire MC, Lavenne F, Bonnefoi F, Mauguière F, Laurent B, Sindou M (1997) Positron emission tomography during motor cortex stimulation for pain control. Stereotact Funct Neurosurg 68(1–4 Pt 1):141–148

    Article  PubMed  Google Scholar 

  • García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, Mauguière F, Sindou M, Laurent B (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83(2):259–273

    Article  PubMed  Google Scholar 

  • Hollander DB, Reeves GV, Clavier JD, Francois MR, Thomas C, Kraemer RR (2010) Partial occlusion during resistance exercise alters effort sense and pain. J Strength Cond Res 24(1):235–243

    Article  PubMed  Google Scholar 

  • Kaufman MP (2012) The exercise pressor reflex in animals. Exp Physiol 97(1):51–58

    Article  PubMed  Google Scholar 

  • Khan SI, McNeil CJ, Gandevia SC, Taylor JL (2011) Effect of experimental muscle pain on maximal voluntary activation of human biceps brachii muscle. J Appl Physiol 111(3):743–750

    Article  PubMed  Google Scholar 

  • Lampropoulou SI, Nowicky AV (2013) The effect of transcranial direct current stimulation on perception of effort in an isolated isometric elbow flexion task. Mot Control 17(4):412–426

    Google Scholar 

  • Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22:495–504

    Article  PubMed Central  PubMed  Google Scholar 

  • Lefaucheur JP, Antal A, Ahdab R, Ciampi de Andrade D, Fregni F, Khedr EM, Nitsche M, Paulus W (2008) The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul 1(4):337–344

    Article  PubMed  Google Scholar 

  • Linton SJ, Shaw WS (2001) Impact of psychological factors in the experience of pain. Phys Ther 91(5):700–711

    Article  Google Scholar 

  • Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of the mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126(5):1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Mauger AR (2013) Fatigue is a pain—the use of novel neurophysiological techniques to understand the fatigue-pain relationship. Front Physiol 13(4):104

    Google Scholar 

  • Mauger AR (2014) Factors affecting the regulation of pacing: current perspectives. Open Access J Sports Med 5:209

    Article  PubMed Central  PubMed  Google Scholar 

  • Mauger AR, Hopker JG (2013) The effect of acetaminophen ingestion on cortico-spinal excitability. Can J Physiol Pharmacol 91(2):187–189

    Article  CAS  PubMed  Google Scholar 

  • Mauger AR, Jones AM, Williams CA (2010) Influence of acetaminophen on performance during time trial cycling. J Appl Physiol 98(1):104

    Google Scholar 

  • Mauger AR, Taylor L, Harding C, Wright B, Foster J, Castle PC (2014) Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat. Exp Physiol 99(1):164–171

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  PubMed  Google Scholar 

  • Muthalib M, Kan B, Nosaka K, Perrey S (2013) Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study. Adv Exp Med Biol 789:73–79

    Article  CAS  PubMed  Google Scholar 

  • Mylius V, Ayache SS, Zouari HG, Aoun-Sebaïti M, Farhat WH, Lefaucheur JP (2012) Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect. Expert Rev Neurother 12(8):983–991

    Article  CAS  PubMed  Google Scholar 

  • Nijs J, Kosek E, Van Oosterwijck J, Meeus M (2012) Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise? Pain Physician 15(3):205–213

    Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: State of the art. Brain Stimul 1(3):206–223

    Article  PubMed  Google Scholar 

  • Noakes TD (2012) Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol 11(3):82

    Google Scholar 

  • O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166

    Article  PubMed  Google Scholar 

  • Okano AH, Fontes EB, Montenegro RA, Farinatti PD, Cyrino ES, Li LM, Bikson M, Noakes TD (2013) Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. doi:10.1136/bjsports-2012-091658

  • Olesen AE, Andresen T, Staahl C, Drewes AM (2012) Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 64(3):722–779

    Article  CAS  PubMed  Google Scholar 

  • Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30(5):263–288

    Article  CAS  PubMed  Google Scholar 

  • Reis J, Fritsch B (2011) Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol 24(6):590–596

    Article  PubMed  Google Scholar 

  • Schestatsky P, Simis M, Freeman R, Pascual-Leone A, Fregni F (2013) Non-invasive brain stimulation and the autonomic nervous system. Clin Neurophysiol 124(9):1716–1728

    Article  PubMed  Google Scholar 

  • St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38(6):797–806

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1994) Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol 349(4):558–582

    Article  CAS  PubMed  Google Scholar 

  • Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL (1997) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78(1):450–460

    CAS  PubMed  Google Scholar 

  • Wardman DL, Gandevia SC, Colebatch JG (2014) Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. Physiol Rep 2(4):e00270

    PubMed Central  PubMed  Google Scholar 

  • Zandieh A, Parhizgar SE, Fakhri M, Taghvaei M, Miri S, Shahbabaie A, Esteghamati S, Ekhtiari H (2013) Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals. Neuromodulation 16(4):345–348

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis R. Mauger.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angius, L., Hopker, J.G., Marcora, S.M. et al. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol 115, 2311–2319 (2015). https://doi.org/10.1007/s00421-015-3212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3212-y

Keywords

Navigation