European Journal of Applied Physiology

, Volume 115, Issue 9, pp 2019–2029 | Cite as

Peripheral conduit and resistance artery function are improved following a single, 1-h bout of peristaltic pulse external pneumatic compression

  • Jeffrey S. MartinEmail author
  • Alexandra R. Borges
  • Darren T. Beck
Original Article



External pneumatic compression (EPC) is being employed for a widening range of clinical and non-clinical populations. However, EPC devices vary markedly in treatment pressures, duty cycles and application sites, and the acute effects of whole limb, lower pressure EPC on peripheral vascular function have not been determined.


The purpose of this study was to determine the acute effects of a single bout of peristaltic pulse EPC on peripheral conduit and resistance artery function.


Twenty (n = 20; males = 12 and females = 8) young and apparently healthy subjects (aged 26.1 ± 8.2 years) participated in this study. A sequential EPC device with five inflation zones arranged linearly and inflating distal to proximal along the lower limbs was employed with target inflation pressures of 70 mmHg for 1 h. Flow-mediated dilation (FMD) of the brachial and popliteal arteries was evaluated with ultrasound before and after EPC. Venous occlusion plethysmography was employed to evaluate limb blood flow at rest and during reactive hyperemia (RH) in the forearm (FBF) and calf (CBF) before and after EPC.


Peak RH CBF was increased by 9 % after EPC (P < 0.05), whereas peak RH FBF (−10 %) did not change significantly (P > 0.25). Normalized popliteal artery FMD post-EPC (2.24 ± 1.41) was significantly higher than pre-EPC (1.36 ± 0.67, P = 0.015) and post-sham (1.58 ± 0.86, P = 0.032) values. Similarly, normalized brachial artery FMD post-EPC (1.47 ± 0.32) was significantly higher than pre-EPC (1.11 ± 0.41, P = 0.004) and post-sham (0.99 ± 0.27, P = 0.026) values.


Acutely, whole limb, lower pressure EPC improves conduit artery endothelial function systemically, but only improves RH blood flow locally (i.e., compressed limbs).


Endothelial function External pneumatic compression Flow-mediated dilation Peripheral vascular function Venous occlusion plethysmography 



6-Keto prostaglandin F1α


AMP-activated protein kinase


Adenosine triphosphate


Blood pressure


Coronary artery disease


Calf blood flow


Calf vascular conductance


Endothelial nitric oxide synthase


External pneumatic compression


Enhanced external counterpulsation


Forearm blood flow


Flow-mediated dilation


Absolute FMD


Relative FMD


FMD normalized to shear rate


Forearm vascular conductance




Intermittent pneumatic compression


Messenger RNA


Nitric oxide




Reactive hyperemia


Sympathetic nervous system


Venous occlusion plethysmography



The authors wish to thank all participants for their time and adherence to protocol directives. Partial support for this study was provided by NormaTec (Newton Center, MA) through a contract awarded to J.S.M.

Conflict of interest

The authors have no conflicts of interest to disclose.


  1. Akhtar M, Wu G-F, Du Z-M et al (2006) Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. Am J Cardiol 98:28–30. doi: 10.1016/j.amjcard.2006.01.053 CrossRefPubMedGoogle Scholar
  2. Avery JC, Beck DT, Casey DP et al (2014) Enhanced external counterpulsation improves peripheral resistance artery blood flow in patients with coronary artery disease. Appl Physiol Nutr Metab 39:405–408. doi: 10.1139/apnm-2013-0309 CrossRefPubMedGoogle Scholar
  3. Beck DT, Martin JS, Casey DP et al (2014) Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol 41:628–636. doi: 10.1111/1440-1681.12263 PubMedCentralPubMedGoogle Scholar
  4. Berry KL, Skyrme-Jones RA, Meredith IT (2000) Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation. Clin Sci Lond Engl 99:261–267CrossRefGoogle Scholar
  5. Braith RW, Conti CR, Nichols WW et al (2010) Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina a randomized sham-controlled study. Circulation 122:1612–1620. doi: 10.1161/CIRCULATIONAHA.109.923482 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Braith RW, Casey DP, Beck DT (2012) Enhanced external counterpulsation for ischemic heart disease: a look behind the curtain. Exerc Sport Sci Rev 40:145–152. doi: 10.1097/JES.0b013e318253de5e PubMedCentralPubMedGoogle Scholar
  7. Chen L-E, Liu K, Qi W-N et al (2002) Role of nitric oxide in vasodilation in upstream muscle during intermittent pneumatic compression. J Appl Physiol 92:559–566. doi: 10.1152/japplphysiol.00365.2001 CrossRefPubMedGoogle Scholar
  8. Clifford PS, Kluess HA, Hamann JJ et al (2006) Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries. J Physiol 572:561–567. doi: 10.1113/jphysiol.2005.099507 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dyson KS, Shoemaker JK, Hughson RL (2006) Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am J Physiol Heart Circ Physiol 290:H1446–H1453. doi: 10.1152/ajpheart.00771.2005 CrossRefPubMedGoogle Scholar
  10. Engelke KA, Halliwill JR, Proctor DN et al (1996) Contribution of nitric oxide and prostaglandins to reactive hyperemia in the human forearm. J Appl Physiol 81:1807–1814PubMedGoogle Scholar
  11. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105:114–127. doi: 10.1161/CIRCRESAHA.109.201590 CrossRefPubMedGoogle Scholar
  12. Franklin NC, Ali MM, Robinson AT et al (2014) Massage therapy restores peripheral vascular function after exertion. Arch Phys Med Rehabil 95:1127–1134. doi: 10.1016/j.apmr.2014.02.007 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Giannotti G, Doerries C, Mocharla PS et al (2010) Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension relation to endothelial dysfunction. Hypertension 55:1389–1397. doi: 10.1161/HYPERTENSIONAHA.109.141614 CrossRefPubMedGoogle Scholar
  14. Gurovich AN, Braith RW (2013) Enhanced external counterpulsation creates acute blood flow patterns responsible for improved flow-mediated dilation in humans. Hypertens Res 36:297–305. doi: 10.1038/hr.2012.169 CrossRefPubMedGoogle Scholar
  15. Guyton DP, Khayat A, Husni EA, Schreiber H (1988) Elevated levels of 6-keto-prostaglandin-F1a from a lower extremity during external pneumatic compression. Surg Gynecol Obstet 166:338–342PubMedGoogle Scholar
  16. Hanada T, Hashimoto M, Nosaka S et al (1999) Shear stress enhances prostacyclin release from endocardial endothelial cells. Life Sci 66:215–220. doi: 10.1016/S0024-3205(99)00583-4 CrossRefGoogle Scholar
  17. Hashemi M, Hoseinbalam M, Khazaei M (2008) Long-term effect of enhanced external counterpulsation on endothelial function in the patients with intractable angina. Heart Lung Circ 17:383–387. doi: 10.1016/j.hlc.2008.02.001 CrossRefPubMedGoogle Scholar
  18. Higashi Y, Sasaki S, Nakagawa K et al (2001) A noninvasive measurement of reactive hyperemia that can be used to assess resistance artery endothelial function in humans. Am J Cardiol 87:121–125. doi: 10.1016/S0002-9149(00)01288-1 CrossRefPubMedGoogle Scholar
  19. Hokanson DE, Sumner DS, Strandness DE (1975) An electrically calibrated plethysmograph for direct measurement of limb blood flow. IEEE Trans Biomed Eng 22:25–29. doi: 10.1109/TBME.1975.324535 CrossRefPubMedGoogle Scholar
  20. Horman S, Morel N, Vertommen D et al (2008) AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J Biol Chem 283:18505–18512. doi: 10.1074/jbc.M802053200 CrossRefPubMedGoogle Scholar
  21. Joyner MJ, Dietz NM, Shepherd JT (2001) From belfast to mayo and beyond: the use and future of plethysmography to study blood flow in human limbs. J Appl Physiol 91:2431–2441PubMedGoogle Scholar
  22. Lawson WE, Hui JCK, Zheng ZS et al (1995) Three-year sustained benefit from enhanced external counterpulsation in chronic angina pectoris. Am J Cardiol 75:840–841. doi: 10.1016/S0002-9149(99)80427-5 CrossRefPubMedGoogle Scholar
  23. Lind L, Johansson K, Hall J (2002) The effects of mental stress and the cold pressure test on flow-mediated vasodilation. Blood Press 11:22–27. doi: 10.1080/080370502753543927 CrossRefPubMedGoogle Scholar
  24. Martin JS, Braith RW (2012) Anti-inflammatory effects of enhanced external counterpulsation in subjects with abnormal glucose tolerance. Appl Physiol Nutr Metab 37:1251–1255. doi: 10.1139/h2012-112 CrossRefPubMedGoogle Scholar
  25. Martin JS, Laughlin MH (2013) Pneumatic compression acutely increases peripheral artery flow mediated dilation in compressed and non-compressed limbs. Med Sci Sports Exerc 45:37. doi: 10.1249/01.mss.0000433611.13309.0d CrossRefGoogle Scholar
  26. Martin JS, Beck DT, Aranda JM, Braith RW (2012) Enhanced external counterpulsation improves peripheral artery function and glucose tolerance in subjects with abnormal glucose tolerance. J Appl Physiol 112:868–876. doi: 10.1152/japplphysiol.01336.2011 CrossRefPubMedGoogle Scholar
  27. Martin JS, Beck DT, Braith RW (2014) Peripheral resistance artery blood flow in subjects with abnormal glucose tolerance is improved following enhanced external counterpulsation therapy. Appl Physiol Nutr Metab 39:596–599. doi: 10.1139/apnm-2013-0497 CrossRefPubMedGoogle Scholar
  28. Martin JS, Borges AR, Christy Iv JB, Beck DT (2015a) Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration. Hypertens Res Off J Jpn Soc Hypertens. doi: 10.1038/hr.2015.36 Google Scholar
  29. Martin JS, Friedenreich ZD, Borges AR, Roberts MD (2015b) Acute effects of peristaltic pneumatic compression on repeated anaerobic exercise performance and blood lactate clearance. J Strength Cond Res Natl Strength Cond Assoc. doi: 10.1519/JSC.0000000000000928 Google Scholar
  30. Meredith IT, Currie KE, Anderson TJ et al (1996) Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol Heart Circ Physiol 270:H1435–H1440Google Scholar
  31. Munk N, Symons B, Shang Y et al (2012) Noninvasively measuring the hemodynamic effects of massage on skeletal muscle: a novel hybrid near-infrared diffuse optical instrument. J Bodyw Mov Ther 16:22–28. doi: 10.1016/j.jbmt.2011.01.018 CrossRefPubMedGoogle Scholar
  32. Osanai T, Fujita N, Fujiwara N et al (2000) Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am J Physiol Heart Circ Physiol 278:H233–H238PubMedGoogle Scholar
  33. Padilla J, Johnson BD, Newcomer SC et al (2009) Adjusting flow-mediated dilation for shear stress stimulus allows demonstration of endothelial dysfunction in a population with moderate cardiovascular risk. J Vasc Res 46:592–600. doi: 10.1159/000226227 CrossRefPubMedGoogle Scholar
  34. Park K-H, Kim M-K, Kim H-S et al (2011) Clinical significance of Framingham risk score, flow-mediated dilation and pulse wave velocity in patients with stable angina. Circ J 75:1177–1183. doi: 10.1253/circj.CJ-10-0811 CrossRefPubMedGoogle Scholar
  35. Patterson GC, Whelan RF (1955) Reactive hyperaemia in the human forearm. Clin Sci Lond Engl 14:197–211Google Scholar
  36. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. doi: 10.1152/physrev.90100.2007 CrossRefPubMedGoogle Scholar
  37. Pyke KE, Dwyer EM, Tschakovsky ME (2004) Impact of controlling shear rate on flow-mediated dilation responses in the brachial artery of humans. J Appl Physiol 97:499–508. doi: 10.1152/japplphysiol.01245.2003 CrossRefPubMedGoogle Scholar
  38. Roseguini BT, Sheldon R, Stroup A et al (2010) Impact of chronic intermittent external compressions on forearm blood flow capacity in humans. Eur J Appl Physiol 111:509–519. doi: 10.1007/s00421-010-1657-6 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Sheldon RD, Roseguini BT, Thyfault JP et al (2012) Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans. J Appl Physiol 112:2099–2109. doi: 10.1152/japplphysiol.00042.2012 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Shepherd JT (1983) Circulation to skeletal muscle. In: Handbook of physiology, vol III, pp 319–370Google Scholar
  41. Sumpio BE, Banes AJ (1988) Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery 104:383–389PubMedGoogle Scholar
  42. Tan X, Qi W-N, Gu X et al (2006) Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles. J Biomech 39:2430–2437. doi: 10.1016/j.jbiomech.2005.07.022 CrossRefPubMedGoogle Scholar
  43. Vita JA, Keaney JF (2002) Endothelial function A barometer for cardiovascular risk? Circulation 106:640–642. doi: 10.1161/01.CIR.0000028581.07992.56 CrossRefPubMedGoogle Scholar
  44. Weerapong P, Hume APPA, Kolt GS (2012) The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med 35:235–256. doi: 10.2165/00007256-200535030-00004 CrossRefGoogle Scholar
  45. Wilkinson IB, Webb DJ (2001) Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J Clin Pharmacol 52:631–646. doi: 10.1046/j.0306-5251.2001.01495.x PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Cell Biology and PhysiologyEdward Via College of Osteopathic Medicine-Auburn CampusAuburnUSA
  2. 2.Department of Biomedical SciencesQuinnipiac UniversityHamdenUSA
  3. 3.Department of KinesiologyUniversity of Rhode IslandKingstonUSA

Personalised recommendations