European Journal of Applied Physiology

, Volume 115, Issue 9, pp 1825–1834

Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise

  • Christopher Thompson
  • Lee J. Wylie
  • Jonathan Fulford
  • James Kelly
  • Matthew I. Black
  • Sinead T. J. McDonagh
  • Asker E. Jeukendrup
  • Anni Vanhatalo
  • Andrew M. Jones
Original Article

Abstract

It is possible that dietary nitrate (NO3) supplementation may improve both physical and cognitive performance via its influence on blood flow and cellular energetics.

Purpose

To investigate the effects of dietary NO3 supplementation on exercise performance and cognitive function during a prolonged intermittent sprint test (IST) protocol, which was designed to reflect typical work patterns during team sports.

Methods

In a double-blind randomised crossover study, 16 male team-sport players received NO3-rich (BR; 140 mL day−1; 12.8 mmol of NO3), and NO3-depleted (PL; 140 mL day−1; 0.08 mmol NO3) beetroot juice for 7 days. On day 7 of supplementation, subjects completed the IST (two 40-min “halves” of repeated 2-min blocks consisting of a 6-s “all-out” sprint, 100-s active recovery and 20 s of rest), on a cycle ergometer during which cognitive tasks were simultaneously performed.

Results

Total work done during the sprints of the IST was greater in BR (123 ± 19 kJ) compared to PL (119 ± 17 kJ; P < 0.05). Reaction time of response to the cognitive tasks in the second half of the IST was improved in BR compared to PL (BR first half: 820 ± 96 vs. second half: 817 ± 86 ms; PL first half: 824 ± 114 vs. second half: 847 ± 118 ms; P < 0.05). There was no difference in response accuracy.

Conclusions

These findings suggest that dietary NO3 enhances repeated sprint performance and may attenuate the decline in cognitive function (and specifically reaction time) that may occur during prolonged intermittent exercise.

Keywords

Nitric oxide Dietary supplementation Cognitive performance Sprint performance 

References

  1. Aamand R, Dalsgaard T, Ho YC, Moller A, Roepstorff A, Lund TE (2013) A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation. Neuroimage 83:397–407CrossRefPubMedGoogle Scholar
  2. Bailey SJ, Fulford J, Vanhatalo A, Winyard P, Blackwell JR, Dimenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010a) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109(1):135–148CrossRefPubMedGoogle Scholar
  3. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM (2010b) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107(4):1144–1155CrossRefGoogle Scholar
  4. Besner D, Roberts MA (2005) Stroop dilution revisited: evidence for domain-specific, limited capacity processing. J Exp Psychol Hum Percept Perform 31:3–13CrossRefPubMedGoogle Scholar
  5. Bishop D, Claudius B (2005) Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc 37(5):759–767CrossRefPubMedGoogle Scholar
  6. Bond H, Morton L, Braakhuis AJ (2012) Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab 22(4):251–256PubMedGoogle Scholar
  7. Christensen PM, Nyberg M, Bangsbo J (2013) Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand J Med Sci Sports 23(1):21–31CrossRefGoogle Scholar
  8. Coggan AR, Leibowitz JL, Kadkhodayan A, Thomas DP, Ramamurthy S, Spearie CA, Waller S, Farmer M Peterspn LR (2014) Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy mean and women. Nitric Oxide (in press)Google Scholar
  9. Dreissigacker U, Wendt Wittke T, Tsikas D, Maassen N (2010) Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide 23(2):128–135CrossRefPubMedGoogle Scholar
  10. Durlach PJ, Edmunds R, Howard L, Tipper SP (2002) A rapid effect of caffeinated beverages on two choice reaction time tasks. Nutr Neurosci 5(6):433–442CrossRefGoogle Scholar
  11. Ferguson SK, Holdsworth CT, Wright JL, Fees AJ, Allen JD, Jones AM, Musch TI, Poole DC (2014) Microvascular oxygen pressures in muscles comprised of different fiber types: impact of dietary nitrate supplementation. Nitric Oxide. doi:10.1016/j.niox.2014.09.157 PubMedCentralGoogle Scholar
  12. Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, Musch TI, Poole DC (2013) Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol 591(2):547–557PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fery Y, Ferry A, Hope AV, Rieu M (1997) Effect of physical exhaustion on cognitive functioning. Percept Mot Skills 84(1):291–298CrossRefPubMedGoogle Scholar
  14. Govoni M, Jansson EÅ, Weitzberg E, Lundberg JO (2008) The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19(4):333–337CrossRefPubMedGoogle Scholar
  15. Haider G, Folland JP (2014) Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc 46(12):2234–2243 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  16. Haskell C, Thompson K, Jones AM, Blackwell J, Winyard P, Forster J, Kennedy D (2011) Nitrate-rich beetroot juice modulates cerebral blood flow and cognitive performance in humans. Appetite 57(2):560CrossRefGoogle Scholar
  17. Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, Weitzberg E, Westerblad H (2012) Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol 590(15):3575–3583PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hogervorst E, Riedel W, Jeukendrup A, Jolles J (1996) Cognitive performance after strenuous physical exercise. Percept Mot Skills 83(2):479–488CrossRefPubMedGoogle Scholar
  19. Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16(6):206–214CrossRefPubMedGoogle Scholar
  20. Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2(2):157–161CrossRefPubMedGoogle Scholar
  21. Irwin C, Leveritt M, Shum D, Desbrow B (2013) The effects of dehydration, moderate alcohol consumption, and rehydration on cognitive functions. Alcohol 47(3):203–213CrossRefPubMedGoogle Scholar
  22. Kelly J, Vanhatalo A, Bailey SJ, Wylie LJ, Tucker C, List S, Winyard PG, Jones AM (2014) Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am J Physiol Regul Integr Comp Physiol 307(7):R920–R930CrossRefPubMedGoogle Scholar
  23. Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J (2006) Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 38:1165–1174CrossRefPubMedGoogle Scholar
  24. Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM (2011a) Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc 43(6):1125–1131CrossRefPubMedGoogle Scholar
  25. Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, Dimenna FJ, Gilchrist M, Benjamin N, Jones AM (2011b) Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol 110(3):591–600CrossRefPubMedGoogle Scholar
  26. Larsen F, Weitzberg E, Lundberg J, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol 191(1):59–66CrossRefGoogle Scholar
  27. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 13(2):149–159CrossRefPubMedGoogle Scholar
  28. Lundberg JO, Weitzberg E (2010) NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun 396(1):39–45CrossRefPubMedGoogle Scholar
  29. Lundberg J, Weitzberg E, Gladwin MT (2008) The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167CrossRefPubMedGoogle Scholar
  30. Martin K, Smee D, Thompson K, Rattray B (2014) Dietary nitrate does not improve repeated sprint performance. Int J Sports Physiol Perform 9(5):845–850CrossRefPubMedGoogle Scholar
  31. Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C (2013) The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab 23(5):498–506PubMedGoogle Scholar
  32. Pachana NA, Thompson LW, Marcopulos BA, Yoash-Gantz R (2004) California Older Adult Stroop test (COAST) development of a stroop test adapted for geriatric populations. Clin Gerontol 27(3):3–22CrossRefGoogle Scholar
  33. Poole DC, Wilkerson DP, Jones AM (2008) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol 102(4):403–410CrossRefPubMedGoogle Scholar
  34. Presley TD, Morgan AR, Bechtold E, Clodfelter W, Dove RW, Jennings JM, Kraft RA, Bruce King S, Laurienti PJ, Jack Rejeski W (2011) Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide 24(1):34–42PubMedCentralCrossRefPubMedGoogle Scholar
  35. Reilly T, Smith D (1986) Effect of work intensity on performance in a psychomotor task during exercise. Ergonomics 29(4):601–606CrossRefPubMedGoogle Scholar
  36. Rifkind JM, Nagababu E, Barbiro-Michaely E, Ramasamy S, Pluta RM, Mayevsky A (2007) Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: a role for red cell NO. Nitric Oxide 16(4):448–456CrossRefPubMedGoogle Scholar
  37. Secher NH, Seifert T, Van Lieshout JJ (2008) Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 104(1):306–314CrossRefPubMedGoogle Scholar
  38. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman C (2004) Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci 22(9):843–850CrossRefPubMedGoogle Scholar
  39. Thompson KG, Turner L, Prichard J, Dodd F, Kennedy DO, Haskell C, Blackwell JR, Jones AM (2014) Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol 193:11–20CrossRefPubMedGoogle Scholar
  40. Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermiotadis G, Kelly J, Black MI, Bailey SJ, Vanhatalo A, Jones AM (2013a) Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol 113(7):1673–1684CrossRefPubMedGoogle Scholar
  41. Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard P, Jeukendrup AE, Vanhatalo A, Jones AM (2013b) Beetroot juice and exercise: pharmacodynamic and dose–response relationships. J Appl Physiol 115(3):325–336CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher Thompson
    • 1
  • Lee J. Wylie
    • 1
  • Jonathan Fulford
    • 2
  • James Kelly
    • 1
  • Matthew I. Black
    • 1
  • Sinead T. J. McDonagh
    • 1
  • Asker E. Jeukendrup
    • 3
  • Anni Vanhatalo
    • 1
  • Andrew M. Jones
    • 1
  1. 1.Sport and Health SciencesUniversity of ExeterExeterUK
  2. 2.NIHR Exeter Clinical Research FacilityUniversity of ExeterExeterUK
  3. 3.GSSIBarringtonUSA

Personalised recommendations