European Journal of Applied Physiology

, Volume 115, Issue 8, pp 1769–1777 | Cite as

Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS)

  • Lesley M. Nicol
  • David S. RowlandsEmail author
  • Ruth Fazakerly
  • John Kellett
Original Article



Oral curcumin decreases inflammatory cytokines and increases muscle regeneration in mice.


To determine effects of curcumin on muscle damage, inflammation and delayed onset muscle soreness (DOMS) in humans.


Seventeen men completed a double-blind randomized-controlled crossover trial to estimate the effects of oral curcumin supplementation (2.5 g twice daily) versus placebo on single-leg jump performance and DOMS following unaccustomed heavy eccentric exercise. Curcumin or placebo was taken 2 d before to 3 d after eccentric single-leg press exercise, separated by 14-d washout. Measurements were made at baseline, and 0, 24 and 48-h post-exercise comprising: (a) limb pain (1–10 cm visual analogue scale; VAS), (b) muscle swelling, (c) single-leg jump height, and (d) serum markers of muscle damage and inflammation. Standardized magnitude-based inference was used to define outcomes.


At 24 and 48-h post-exercise, curcumin caused moderate-large reductions in pain during single-leg squat (VAS scale −1.4 to −1.7; 90 %CL: ±1.0), gluteal stretch (−1.0 to −1.9; ±0.9), squat jump (−1.5 to −1.1; ± 1.2) and small reductions in creatine kinase activity (−22–29 %; ±21–22 %). Associated with the pain reduction was a small increase in single-leg jump performance (15 %; 90 %CL ± 12 %). Curcumin increased interleukin-6 concentrations at 0-h (31 %; ±29 %) and 48-h (32 %; ±29 %) relative to baseline, but decreased IL-6 at 24-h relative to post-exercise (−20 %; ±18 %).


Oral curcumin likely reduces pain associated with DOMS with some evidence for enhanced recovery of muscle performance. Further study is required on mechanisms and translational effects on sport or vocational performance.


Performance Eccentric exercise Inflammation Recovery Visual analogue scale 



Activator protein 1


Australian Institute of Sport


Creatine kinase


Cyclooxygenase 2


Delayed onset muscle soreness


Deoxyribonucleic acid

NF kappa B

Nuclear factor kappa beta


Interleukin 6


One repetition maximum


Tumour necrosis factor alpha


Visual analogue scale



Dr Greg Lovell, Bev Andersen, Jill Flanagan, Dr Chris Rumball, Dr Kieran Fallon, and all staff at AIS Sports Medicine Department. Funding from the Australian Institute of Sport. Dr Lesley Nicol is a board member of Drug Free Sport New Zealand. Other authors have no disclosures.


  1. Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16(6):529–538PubMedCrossRefGoogle Scholar
  2. Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sport Physiol Perf 1(1):50–57Google Scholar
  3. Braakhuis AJ, Hopkins WG, Lowe TE (2013) Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers. Int J Sports Physiol Perform 8(5):565–572PubMedGoogle Scholar
  4. Braakhuis AJ, Hopkins WG, Lowe TE (2014) Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci 14(2):160–168PubMedCrossRefGoogle Scholar
  5. Brown SJ, Child RB, Day SH, Donnelly AE (1997) Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions. J Sports Sci 15(2):215–222. doi: 10.1080/026404197367498 PubMedCrossRefGoogle Scholar
  6. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin Modulates nuclear factor κB (NF-κB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/akt pathway. J Biol Chem 286(32):28556–28566. doi: 10.1074/jbc.M111.256180 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Byrne C, Eston R (2002a) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20(5):417–425PubMedCrossRefGoogle Scholar
  8. Byrne C, Eston R (2002b) Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions. J Sports Sci 20(12):951–959. doi: 10.1080/026404102321011706 PubMedCrossRefGoogle Scholar
  9. Byrnes WC, Clarkson PM (1986) Delayed onset muscle soreness and training. Clin Sports Med 5(3):605–614PubMedGoogle Scholar
  10. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33(2):145–164. doi: 10.2165/00007256-200333020-00005 PubMedCrossRefGoogle Scholar
  11. Clarkson PM, Sayers SP (1999) Etiology of exercise-induced muscle damage. Can J Appl Physiol 24(3):234–248PubMedCrossRefGoogle Scholar
  12. Cleak MJ, Eston RG (1992) Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise. Br J Sports Med 26(4):267–272PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cockburn E, Hayes P, French D, Stevenson E (2008) St Clair Gibson A: acute milk-based protein-CHO supplementation attenuates exercise-induced muscle damage. Appl Physiol Nutr Metab 33:775–783PubMedCrossRefGoogle Scholar
  14. Connolly DA, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17(1):197–208PubMedGoogle Scholar
  15. Cooke M, Rybalka E, Stathis C, Cribb P, Hayes A (2010) Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 7(1):30PubMedCentralPubMedCrossRefGoogle Scholar
  16. Davis JM, Murphy EA, Carmichael MD, Zielinski MR, Groschwitz CM, Brown AS, Gangemi JD, Ghaffar A, Mayer EP (2007) Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 292(6):R2168–R2173PubMedCrossRefGoogle Scholar
  17. Di Pierro F, Rapacioli G, Di Maio E, Appendino G, Franceschi F, Togni S (2013a) Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®), nimesulide, and acetaminophen. J Pain Res 6:201–205PubMedGoogle Scholar
  18. Di Pierro F, Rapacioli G, Di Maio EA, Appendino G, Franceschi F, Togni S (2013b) Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®), nimesulide, and acetaminophen. J Pain Res 6:201–205. doi: 10.2147/JPR.S42184jpr-6-201 PubMedGoogle Scholar
  19. Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET (2009) Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J Appl Physiol 107(3):853–858PubMedCentralPubMedCrossRefGoogle Scholar
  20. Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, Pons A, Tur J (2014) Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): a randomised, placebo-controlled trial. J Int Soc Sports Nutr 11:31PubMedCentralPubMedCrossRefGoogle Scholar
  21. Enns DL, Tiidus PM (2010) The influence of estrogen on skeletal muscle: sex matters. Sports Med 40(1):41–58PubMedCrossRefGoogle Scholar
  22. Eston R, Peters D (1999) Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci 17(3):231–238PubMedCrossRefGoogle Scholar
  23. Gaston-Johansson F, Gustafsson M (1990) Rheumatoid arthritis: determination of pain characteristics and comparison of RAI and VAS in its measurement. Pain 41(1):35–40. doi: 10.1016/0304-3959(90)91106-S PubMedCrossRefGoogle Scholar
  24. Harrison BC, Robinson D, Davison BJ, Foley B, Seda E, Byrnes WC (2001) Treatment of exercise-induced muscle injury via hyperbaric oxygen therapy. Med Sci Sports Exerc 33(1):36–42PubMedCrossRefGoogle Scholar
  25. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. J Am Med Assoc 286(11):1317–1324CrossRefGoogle Scholar
  26. Hopkins WG (2006) Estimating sample size for magnitude-based inferences. Sportscience 10:60–63Google Scholar
  27. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278 PubMedCrossRefGoogle Scholar
  28. Howatson G, McHugh M, Hill J, Brouner J, Jewell A, van Someren K, Shave R, Howatson S (2009) Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 20(6):843–852CrossRefGoogle Scholar
  29. Hsu CH, Cheng AL (2007) Clinical studies with curcumin. Adv Exp Med Biol 595:471–480. doi: 10.1007/978-0-387-46401-5_21 PubMedCrossRefGoogle Scholar
  30. Itokawa H, Shi Q, Akiyama T, Morris-Natsche S, Lee K (2008) Recent advances in the investigation of curcuminoids. Chin Med 3:11PubMedCentralPubMedCrossRefGoogle Scholar
  31. Johansson PH, Lindstrom L, Sundelin G, Lindstrom B (1999) The effects of preexercise stretching on muscular soreness, tenderness and force loss following heavy eccentric exercise. Scand J Med Sci Sports 9(4):219–225PubMedCrossRefGoogle Scholar
  32. Kuehl K, Perrier E, Elliot D, Chesnutt J (2010) Efficacy of tart cherry juice in reducing muscle pain during running: a randomized controlled trial. J Int Soc Sports Nutr 7(1):17PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lund H, Vestergaard-Poulsen P, Kanstrup IL, Sejrsen P (1998) The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise. Scand J Med Sci Sports 8(4):216–221PubMedCrossRefGoogle Scholar
  34. MacIntyre DL, Reid WD, McKenzie DC (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med 20(1):24–40PubMedCrossRefGoogle Scholar
  35. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087PubMedCrossRefGoogle Scholar
  36. Mair J, Mayr M, Muller E, Koller A, Haid C, Artner-Dworzak E, Calzolari C, Larue C, Puschendorf B (1995) Rapid adaptation to eccentric exercise-induced muscle damage. Int J Sports Med 16(6):352–356. doi: 10.1055/s-2007-973019 PubMedCrossRefGoogle Scholar
  37. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125. doi: 10.1007/978-0-387-46401-5_3 PubMedCrossRefGoogle Scholar
  38. Moresi V, Pristera A, Scicchitano BM, Molinaro M, Teodori L, Sassoon D, Adamo S, Coletti D (2008) Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response. Stem Cells 26(4):997–1008PubMedCrossRefGoogle Scholar
  39. Nieman DC, Henson DA, Dumke CL, Oley K, McAnulty SR, Davis JM, Murphy EA, Utter AC, Lind RH, McAnulty LS, Morrow JD (2006) Ibuprofen use, endotoxemia, inflammation, and plasma cytokines during ultramarathon competition. Brain Behav Immun 20(6):578–584PubMedCrossRefGoogle Scholar
  40. Nieman DC, Laupheimer MW, Ranchordas MK, Burke LM, Stear SJ, Castell LM (2012) A–Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance—Part 33. Br J Sports Med 46(8):618–620PubMedCrossRefGoogle Scholar
  41. Nikolaidis MG, Kerksick CM, Lamprecht M, McAnulty SM (2012) Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev. 2012:707941. doi: 10.1155/2012/707941 PubMedCentralPubMedGoogle Scholar
  42. Nosaka K, Sakamoto K, Newton M, Sacco P (2001) How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sports Exerc 33(9):1490–1495PubMedCrossRefGoogle Scholar
  43. Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–345PubMedCentralPubMedCrossRefGoogle Scholar
  44. Rowlands DS, Rossler K, Thorp RM, Graham D, Timmons BW, Stannard S, Tarnopolsky MA (2008a) Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metabol 33:39–51CrossRefGoogle Scholar
  45. Rowlands DS, Rossler K, Thorp RM, Graham DF, Timmons DW, Stannard SR, Tarnopolsky MA (2008b) Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metabol 33:39–51CrossRefGoogle Scholar
  46. Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, Moore D (2014) Stellingwerff T (2014) Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc 46(5):98–99Google Scholar
  47. Saunders MJ (2007) Coingestion of carbohydrate-protein during endurance exercise: influence on performance and recovery. Int J Sport Nutr Exerc Metab 17:S87–S103PubMedGoogle Scholar
  48. Sellwood KL, Brukner P, Williams D, Nicol A, Hinman R (2007) Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med 41(6):392–397PubMedCentralPubMedCrossRefGoogle Scholar
  49. Singh S, Aggarwal B (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270:24995–25000PubMedCrossRefGoogle Scholar
  50. Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK (1999) Systemic administration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. Am J Physiol 277(2 Pt 1):C320–C329PubMedGoogle Scholar
  51. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Reg Int Comp Physiol 298(5):R1173–R1187. doi: 10.1152/ajpregu.00735.2009 CrossRefGoogle Scholar
  52. Vaile JM, Gill ND, Blazevich AJ (2007) The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J Strength Cond Res 21(3):697–702PubMedGoogle Scholar
  53. Vaile J, Halson S, Gill N, Dawson B (2008a) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102(4):447–455. doi: 10.1007/s00421-007-0605-6 PubMedCrossRefGoogle Scholar
  54. Vaile J, Halson S, Gill N, Dawson B (2008b) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102(4):447–455. doi: 10.1007/s00421-007-0605-6 PubMedCrossRefGoogle Scholar
  55. Willoughby D, Taylor M, Taylor L (2003a) Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 35:2023–2031PubMedCrossRefGoogle Scholar
  56. Willoughby DS, McFarlin B, Bois C (2003b) Interleukin-6 expression after repeated bouts of eccentric exercise. Int J Sports Med 24(1):15–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lesley M. Nicol
    • 1
  • David S. Rowlands
    • 2
    Email author
  • Ruth Fazakerly
    • 3
  • John Kellett
    • 4
  1. 1.SportsMed CanterburyChristchurchNew Zealand
  2. 2.School of Sport and ExerciseMassey UniversityWellingtonNew Zealand
  3. 3.Department of Sports MedicineAustralian Institute of SportCanberraAustralia
  4. 4.HawkerAustralia

Personalised recommendations