Skip to main content
Log in

On the nature of the electromyographic signals recorded during vibration exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Surface electromyography (EMG) has been widely used to measure neuromuscular activity during vibration exercise (VE) to investigate the underlying mechanisms elicited by VE. However, the EMG spectrum recorded during VE shows sharp peaks at the vibration frequency whose interpretation remains controversial. Some authors considered those peaks as a result of motion artifacts, while others interpreted them as due to vibration-induced neuromuscular activity. The aim of the present study is to clarify the nature of those sharp peaks observed during VE.

Methods

Three independent EMG measurements were performed during VE: in vitro (IVT), in vivo at rest (\({\hbox {IVV}_\mathrm{R}}\)), and in vivo during voluntary contraction (\({\hbox {IVV}_\mathrm{C}}\)). The amplitudes of the EMG vibration frequency components (\({\hbox {A}_\mathrm{VF}}\)) were extracted for all measurements. The conduction velocity (CV) of the vibration frequency components and the full EMG spectrum were also estimated during voluntary contraction.

Results

Our spectrum analysis revealed small \({\hbox {A}_\mathrm{VF}}\) for IVT and \({\hbox {IVV}_\mathrm{R}}\), accounting for only 3.3 and 7.6 % of that obtained from \({\hbox {IVV}_\mathrm{C}}\). Moreover, the CV estimation indicated the EMG vibration components to propagate along the muscle fiber with CV \(\approx\) 6.5 m/s, comparable to the CV estimated using the full EMG spectrum (5.7 m/s).

Conclusion

We may therefore conclude that the sharp spectral peaks observed during VE are mainly due to vibration-induced muscle activity rather than motion artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A\(_\mathrm{{VF}}\) :

Amplitude of the vibration frequency components

CV:

Conduction velocity

CV\(_\mathrm{{ACC}}\) :

CV of the acceleration signals

CV\(_\mathrm{{EMG}}\) :

CV of the full EMG spectrum

CV\(_\mathrm{{VF}}\) :

CV of the vibration frequency components

EMG:

Electromyography

IVT:

In vitro

IVV\(_\mathrm{{C}}\) :

In vivo during voluntary contraction

IVV\(_\mathrm{{R}}\) :

In vivo at rest

MF:

Mean frequency

MVC:

Maximum voluntary contraction

TVR:

Tonic vibration reflex

VE:

Vibration exercise

WBV:

Whole body vibration

References

  • Abercromby AF, Amonette WE, Layne CS, Mcfarlin BK, Hinman MR, Paloski WH (2007) Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc 39:1642–1650

    Article  PubMed  Google Scholar 

  • Bendat JS, Piersol AG (1980) Engineering applications of correlation and spectral analysis. Wiley, New York

    Google Scholar 

  • Blottner D, Salanova M, Püttmann B, Schiffl G, Felsenberg D, Buehring B, Rittweger J (2006) Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol 97:261–271

    Article  PubMed  Google Scholar 

  • Bongiovanni LG, Hagbarth KE, Stjernberg L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol 423(1):15–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bosco C, Cardinale M, Tsarpela O (1999) Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol Occup Physiol 79(4):306–311

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Hagbarth KE, Löfstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol 261(3):695–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31(1):3–7

    Article  PubMed  Google Scholar 

  • Cardinale M, Lim J (2003) The acute effects of two different whole body vibration frequencies on vertical jump performance. Med Sport 56(4):287–292

    Google Scholar 

  • Cochrane D, Stannard S (2005) Acute whole body vibration training increases vertical jump and flexibility performance in elite female field hockey players. Br J Sports Med 39:860–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies SW, Parker P (1987) Estimation of myoelectrc conduction velocity distribution. IEEE Trans Biomed Eng 34(5):365–374

    Article  CAS  PubMed  Google Scholar 

  • Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35(6):1033–1041

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, van der Linden RM, van der Zijden MJ, Hollander AP, de Haan A (2003a) Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88:472–475

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003b) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90:595–600

    Article  PubMed  Google Scholar 

  • de Talhouet H, Webster JG (1996) The origin of skin-stretch-caused motion artifacts under electrodes. Physiol Meas 17(2):81–93

    Article  PubMed  Google Scholar 

  • Eklund G, Hagbarth KE (1966) Normal variability of tonic vibration reflexes in man. Exp Neurol 16(1):80–92

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Merletti R (2000) Comparison of algrithms for estimation of emg variables during voluntary isometric contractions. J Electromyogr Kinesiol 10:337–349

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Merletti R (2004) Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput 42(4):432–445

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Negro F (2007) Esitimation of muscle fiber conduction velocity with a spectral multidip approach. IEEE Trans Biomed Eng 54(9):1583–1589

    Article  PubMed  Google Scholar 

  • Fratini A, Cesarelli M, Bifulco P, Romano M (2009) Relevance of motion artifact in electromyography recordings during vibration treatment. J Electromyogr Kinesiol 19:710–718

    Article  PubMed  Google Scholar 

  • Fromm C, Noth J (1976) Reflex responses of gamma motoneurones to vibration of the muscle they innervate. J Physiol 256(1):117–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagbarth KE, Eklund G (1966) Tonic vibration reflexes (tvr) in spasticity. Brain Res 2(2):201–203

    Article  CAS  PubMed  Google Scholar 

  • Hagbarth KE, Burke D, Wallin BG, Löfstedt L (1976) Single unit spindle responses to muscle vibration in man. Prog Brain Res 44:281–289

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Hiraga K, Watanabe S (1989) The effects of thiamylyl sodium on the tonic vibration reflex in man. Brain Res 497:291–295

    Article  CAS  PubMed  Google Scholar 

  • Houtman CJ, Stegeman DF, van Dijk JP, Zwarts MJ (2003) Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations. J Appl Physiol 95:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Huhta JC, Webster JG (1973) 60-Hz interference in electrocardiography. IEEE Trans Biomed Eng 20(2):91–101

    Article  CAS  PubMed  Google Scholar 

  • Hunter IW, Kearney RE, Jones LA (1987) Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques. Med Biol Eng Comput 25(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Issurin VB, Tenenbaum G (1999) Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J Sports Sci 17(3):177–182

    Article  CAS  PubMed  Google Scholar 

  • Issurin VB, Liebermann DG, Tenenbaum G (1994) Effect of vibratory stimulation training on maximal force and flexibility. J Sports Sci 12(6):561–566

    Article  CAS  PubMed  Google Scholar 

  • Kahn A (1965) Motion artifacts and streaming potentials in relation to biological electrodes. In: Proceedings of Dig 6th Int Conf Med Electr Biol Eng, pp 562–563

  • Kinser AM, Ramsey MW, O’bryant HS, Ayres CA, Sands WA, Stone MH (2008) Vibration and stretching effects on flexibility and explosive strength in young gymnasts. Med Sci Sports Exerc 40(1):133–140

    Article  PubMed  Google Scholar 

  • Kvorning T, Bagger M, Caserotti P, Madsen K (2006) Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur J Appl Physiol 96:615–625

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sakamoto K (1996) The influence of location of electrode on muscle fiber conduction velocity and emg power spectrum during voluntary isometric contraction measured with surface array electrodes. Appl Hum Sci 15(1):25–32

    Article  Google Scholar 

  • Martin BJ, Park HS (1997) Analysis of the tonic vibration reflex: influence of vibration variables on motor unit synchronization and fatigue. Eur J Appl Physiol Occup Physiol 75(6):504–511

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1966) The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon. J Physiol 184:450–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merletti R, Knaflitz M, de Luca CJ (1990) Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J Appl Physiol 69(5):1810–1820

    CAS  PubMed  Google Scholar 

  • Mischi M, Cardinale M (2009) The effects of a 28-Hz vibration on arm muscle activity during isometric exercise. Med Sci Sports Exerc 41(3):645–653

    Article  PubMed  Google Scholar 

  • Mischi M, Rabotti C, Cardinale M (2010) Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies. In: Proceedings of 32th Annu Int Conf IEEE Eng Med Biol Soc, pp 2338–2341

  • Moritani T, Muro M, Nagata A (1986) Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 60(4):1179–1185

    CAS  PubMed  Google Scholar 

  • Naeije M, Zorn H (1982) Relation between emg power spectrum shifts and muscle fiber action potential conduction velocity changes during local muscular fatigue in man. Eur J Appl Physiol 50:23–33

    Article  Google Scholar 

  • Ödman S (1981) Potential and impedance variations following skin deformation. Med Biol Eng Comput 19:271–278

    Article  PubMed  Google Scholar 

  • Ödman S, Oberg PA (1982) Movement-induced potentials in surface electrodes. Med Biol Eng Comput 20:159–166

    Article  PubMed  Google Scholar 

  • Park HS, Martin BJ (1993) Contribution of the tonic vibration reflex to muscle stress and muscle fatigue. Scand J Work Environ Health 19:35–42

    Article  CAS  PubMed  Google Scholar 

  • Poston B, Holcomb W, Magg MA, Linn LL (2007) The acute effects of mechanical vibration on power output in the bench press. J Strength Cond Res 21(1):199–203

  • Rabotti C, Mischi M, Oei SG, Bergmans JW (2010) Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans Biomed Eng 57(9):2178–2187

    Article  PubMed  Google Scholar 

  • Rees SS, Murphy AJ, Watsford ML (2008) Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial. Phys Ther 88(4):462–470

    Article  PubMed  Google Scholar 

  • Ribot-Ciscar E, Rossi-Durand C, Roll JP (2000) Increase muscle spindle sensitivity to movement during reinforcement manoeuvres in relaxed human subjects. J Physiol 523(1):271–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134–142

    Article  CAS  PubMed  Google Scholar 

  • Rittweger J, Mutschelknauss M, Felsenberg D (2003) Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct Imaging 23(2):81–86

    Article  PubMed  Google Scholar 

  • Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W (2010) Emg activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol 110(1):143–151

    Article  PubMed  Google Scholar 

  • Romaiguère P, Vedel JP, Azulay JP, Pagni S (1991) Diferential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man. J Physiol (Lond) 444:645–667

    Article  Google Scholar 

  • Sands WA, Mcneal JR, Stone MH, Russell EM, Jemni M (2006) Flexibility enhancement with vibration: acute and long-term. Med Sci Sports Exerc 38(4):720–725

    Article  PubMed  Google Scholar 

  • Simakov AB, Webster JG (2010) Motion artifact from electrodes and cables. Iran J Electr Comput Eng 9(2):139–143

    Google Scholar 

  • Staudenmann D, Roeleveld K, Stegeman DF, van Dieen JH (2010) Methodological aspects of semg recordings for force estimation-a tutorial and review. J Electromyogr Kinesiol 20(3):375–387

    Article  PubMed  Google Scholar 

  • Tam HW, Webster JG (1977) Minimizing electrode motion artifact by skin abration. IEEE Trans Biomed Eng 24(2):134–139

    Article  CAS  PubMed  Google Scholar 

  • Wakeling JM, Nigg BM (2001) Modification of soft tissue vibrations in the leg by muscular activity. J Appl Physiol 90(2):412–420

    CAS  PubMed  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • Xu L, Rabotti C, Mischi M (2012) Characterization of a novel instrument for vibration exercise. In: Proceedings of 34th Annu Int Conf IEEE Eng Med Biol Soc, pp 2760–2763

  • Xu L, Rabotti C, Mischi M (2013) Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation. IEEE Trans Neural Syst Rehabil Eng 21(2):275–282

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported with a valorization grant from the Dutch Technology Foundation STW and a scholarship from the China Scholarship Council. The experiments performed in the present study comply with the current laws of the Netherlands.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xu.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Rabotti, C. & Mischi, M. On the nature of the electromyographic signals recorded during vibration exercise. Eur J Appl Physiol 115, 1095–1106 (2015). https://doi.org/10.1007/s00421-014-3091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3091-7

Keywords

Navigation