Skip to main content
Log in

Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The effect of acute activation of the sympathetic nervous system on the dynamic response of muscle hyperaemia during exercise at different intensities is not clear.

Methods

To explore this, six men performed 16, 5-min bouts of intermittent calf contractions at two intensities (25 and 50 % MVC) and two levels of sympathetic activation (CPT cold pressor test, CON control). Mean arterial pressure (MAP) and leg vascular conductance (LVC leg blood flow/MAP) were measured during rest and contractions (3 s intervals), and dynamic response characteristics of LVC were estimated using curve-fitting and empirical modeling.

Results

MAP was ~20 % greater (P ≤ 0.05) during CPT than CON before and during initial contractions at both intensities. At 25 % MVC, CPT reduced the exercise-induced change in LVC (0.109 vs 0.125 ml 100 ml−1 min−1 mmHg−1; P < 0.05), an effect attributed to the reduction in the amplitude of the fast growth phase (0.091 vs 0.128 1 ml 100 ml−1 min−1 mmHg−1; P < 0.05). At 50 % MVC, CPT also blunted the fast growth phase (0.147 vs 0.189 ml 100 ml−1 min−1 mmHg−1; P < 0.05), but the total change in LVC during exercise was unaffected because of a significant reduction in the amplitude of the rapid decay phase and tendency (P = 0.1) for a lower amplitude of the slow decay phase.

Conclusion

Increased sympathetic constraint of vasodilation persists during initial contractions but is overcome at the high intensity by a mechanism apparently related to hyperaemic decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A n :

Amplitude of phase n

CON:

Control

CON25:

Control condition at 25 % MVC

CON50:

Control condition at 50 % MVC

CPT:

Cold pressor test

CPT25:

Cold pressor test at 25 % MVC

CPT50:

Cold pressor test at 50 % MVC

EMG:

Electromyogram

F n :

Conditional argument for phase n

GM:

Gastrocnemius lateralis

LBF:

Leg blood flow

LVC:

Leg vascular conductance

MAP:

Mean arterial pressure

MVC:

Maximum voluntary contraction

T:

Temperature

TA:

Tibialis anterior

TDn :

Time delay of phase n

τn :

Time constant of phase n

References

  • Andersen P, Adams RP, Sjogaard G, Thorboe A, Saltin B (1985) Dynamic knee extension as model for study of isolated exercising muscle in humans. J Appl Physiol 59:1647–1653

    CAS  PubMed  Google Scholar 

  • Boulton D, Taylor CE, Macefield VG, Green S (2014) Effect of contraction intensity on sympathetic nerve activity to active human skeletal muscle. Front Physiol 5:1–9

    Article  Google Scholar 

  • Buckwalter JB, Clifford PS (1999) alpha-adrenergic vasoconstriction in active skeletal muscles during dynamic exercise. Am J Physiol (Heart Circ Physiol) 277:H33–H39

    CAS  Google Scholar 

  • Buckwalter JB, Clifford PS (2001) The paradox of sympathetic vasoconstriction in exercising skeletal muscle. Exerc Sports Sci Rev 29:159–163

    Article  CAS  Google Scholar 

  • Buckwalter JB, Naik JS, Valic Z, Clifford PS (2001) Exercise attenuates alpha-adrenergic-receptor responsiveness in skeletal musle vasculature. J Appl Physiol 90:172–178

    CAS  PubMed  Google Scholar 

  • Dinenno FA, Joyner MJ (2003) Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory? J Physiol 553(1):281–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dinenno FA, Joyner MJ (2004) Combined NO and PG inhibition augments alpha-adrenergic vasoconstriction in contracting human skeletal muscle. Am J Physiol (Heart Circ Physiol) 287:H2576–H2584

    Article  CAS  Google Scholar 

  • Dinenno FA, Masuki S, Joyner MJ (2005) Impaired modulation of sympathetic alpha-adrenergic vasoconstriction in contracting forearm muscle of ageing men. J Physiol 567:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donald DE, Rowlands DJ, Ferguson DA (1970) Similarity of blood flow in the normal and the sympathectomised dog hind limb during graded exercise. Circ Res 25:185–199

    Article  Google Scholar 

  • Donnelly J, Green S (2013) Effect of hypoxia on the dynamic response characteristics of hyperaemia in the contracting human calf muscle. Exp Physiol 98(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Egana M, Green S (2005) Effect of body tilt on calf muscle performance and blood flow in humans. J Appl Physiol 98:2249–2258

    Article  PubMed  Google Scholar 

  • Fadel PJ, Farias M III, Gallagher KM, Wang Z, Thomas GD (2012) Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans. J Physiol 590(2):395–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzpatrick R, Burke D, Gandevia SC (1996) Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol 76:3994–4008

    CAS  PubMed  Google Scholar 

  • Green S, Thorp R, Reeder E, Donnelly J, Fordy G (2011) Venous occlusion plethysmography versus Doppler ultrasound in the assessment of leg blood flow during calf exercise. Eur J Appl Physiol 111:1889–1900

    Article  PubMed  Google Scholar 

  • Hamann JJ, Buckwalter JB, Valic Z, Clifford PS (2002) Sympathetic constraint of muscle blood flow at the onset of dynamic exercise. J Appl Physiol 92:2452–2456

    Article  PubMed  Google Scholar 

  • Ives SJ, Andtbacka RHI, Noyes RD, Morgan RG, Gifford JR, Park S-Y, Symons JD, Richardson RS (2013) alpha1-adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH. Exp Physiol 98(1):256–267

    Article  CAS  PubMed  Google Scholar 

  • Jendzjowsky NG, DeLorey DS (2013) Short-term exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism. J Physiol 591(6):1535–1549

    Article  PubMed Central  PubMed  Google Scholar 

  • Joyner MJ, Lennon RL, Wedel DJ, Rose SH, Shepherd JT (1990) Blood flow to contracting human muscles: influence of increased sympathetic activity. J Appl Physiol 68:1453–1457

    CAS  PubMed  Google Scholar 

  • Kagaya A, Saito M, Ogita F, Shinohara M (1994) Exhausting handgrip exercise reduces the blood flow in the active calf muscle exercising at low intensity. Eur J Appl Physiol 68:252–257

    Article  CAS  Google Scholar 

  • Keller DM, Ogoh S, Greene S, Olivencia-Yurvati A, Raven PB (2004) Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle. J Physiol 561:273–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiely C, O’Connor E, O’Shea D, Green S, Egana M (2014) Haemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol 117:755–764

    Article  PubMed  Google Scholar 

  • Kregel KC, Seals DR, Callister R (1992) Sympathetic nervous system activity during skin cooling in humans: relationship to stimulus intensity and pain sensation. J Physiol 454:359–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacAnaney O, Reilly H, O’Shea D, Egana M, Green S (2011) Effect of type 2 diabetes on the dynamic response characteristics of leg vascular conductance during exercise. Diab Vasc Dis Res 8:12–21

    Article  PubMed  Google Scholar 

  • Masuki S, Nose H (2003) Arterial baroreflex control of muscle blood flow at the onset of voluntary locomotion in mice. J Physiol 553(1):191–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortensen SP, Morkeberg J, Thaning P, Hellsten Y, Saltin B (2012a) Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP. Am J Physiol (Heart Circ Physiol) 302:H2074–H2082

    Article  CAS  Google Scholar 

  • Mortensen SP, Nyberg M, Winding K, Saltin B (2012b) Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg. J Physiol 590(23):6227–6236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson DF, Armstrong RB, Laughlin MH (1988) Sympathetic neural influences on muscle blood flow in rats during submaximal exercise. J Appl Physiol 65:434–440

    CAS  PubMed  Google Scholar 

  • Reeder E, Green S (2012) Dynamic response characteristics of muscle hyperaemia: effect of exercise intensity and relation to electromyographic activity. Eur J Appl Physiol 112:3997–4013

    Article  PubMed  Google Scholar 

  • Remensnyder JP, Mitchell JH, Sarnoff SJ (1962) Functional sympatholysis during muscular activity. observations on influence of carotid sinus on oxygen uptake. Circ Res 11:370–380

    Article  CAS  PubMed  Google Scholar 

  • Saitou K, Masuda T, Michikami D, Kojima R, Okada M (2000) Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG. J Human Ergol 29:35–52

    CAS  Google Scholar 

  • Saltin B (2007) Exercise hyperaemia: magnitude and aspects on regulation in humans. J Physiol 583(3):819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saunders NR, Pyke KE, Tschakovsky ME (2005) Dynamic response characteristics of local muscle blood flow regulatory mechanisms in human forearm exercise. J Appl Physiol 98:1286–1296

    Article  PubMed  Google Scholar 

  • Savard G, Strange S, Kiens B, Richter EA, Christensen NJ, Saltin B (1987) Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiol Scand 131:507–515

    Article  CAS  PubMed  Google Scholar 

  • Sprangers RLH, Wesseling KH, Imholz ALT, Imholz BPM, Wieling W (1991) Initial blood pressure fall on stand up and exercise explained by changes in total peripheral resistance. J Appl Physiol 70:523–530

    Article  CAS  PubMed  Google Scholar 

  • Thaning P, Bune LT, Zaar M, Saltin B, Rosenmeier JB (2011) Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine. Diab Care 34:1186–1191

    Article  CAS  Google Scholar 

  • Thomas GD, Segal SS (2004) Neural control of blood flow during exercise. J Appl Physiol 97:731–738

    Article  CAS  PubMed  Google Scholar 

  • Thomas GD, Hansen J, Victor RG (1994) Inhibition of alpha2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. Am J Physiol (Heart Circ Physiol) 266:H920–H929

    CAS  Google Scholar 

  • Tschakovsky ME, Hughson RL (1999) Ischemic muscle chemoreflex response elevates blood flow in nonischemic exercising human forearm muscle. Am J Physiol (Heart Circ Physiol) 277:H635–H642

    CAS  Google Scholar 

  • Tschakovsky ME, Hughson RL (2003) Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J Appl Physiol 94:1785–1792

    Article  CAS  PubMed  Google Scholar 

  • Tschakovsky ME, Sujirattanawimol K, Ruble SB, Valic Z, Joyner MJ (2002) Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle? J Physiol 541:623–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vongpatanasin W, Wang Z, Arbique D, Arbique G, Adams-Huet B, Mitchell JH, Victor RG, Thomas GD (2011) Functional sympatholysis is impaired in hypertensive humans. J Physiol 589(5):1209–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe H, Watanabe K, Wadazumi T, Yoneyama F (2007) Effect of exercise intensity on mild rhythmic-handgrip-exercise-induced functional sympatholysis. J Physiol Anthropol 26:593–597

    Article  PubMed  Google Scholar 

  • Wieling W, Harms MPM, ten Harkel ADJ, Van Lieshout JJ, Sprangers RLH (1996) Circulatory response evoked by a 3 s bout of dynamic leg exercise in humans. J Physiol 494(2):601–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkins BW, Schrage WG, Liu Z, Hancock KC, Joyner MJ (2006) Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle. J Appl Physiol 101:1343–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Green.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, S., Cameron, E. Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle. Eur J Appl Physiol 115, 879–890 (2015). https://doi.org/10.1007/s00421-014-3069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3069-5

Keywords

Navigation