Advertisement

European Journal of Applied Physiology

, Volume 115, Issue 4, pp 691–701 | Cite as

Coordination of intrinsic and extrinsic foot muscles during walking

  • Karl E. ZelikEmail author
  • Valentina La Scaleia
  • Yuri P. Ivanenko
  • Francesco Lacquaniti
Original Article

Abstract

Purpose

The human foot undergoes complex deformations during walking due to passive tissues and active muscles. However, based on prior recordings it is unclear if muscles that contribute to flexion/extension of the metatarsophalangeal (MTP) joints are activated synchronously to modulate joint impedance, or sequentially to perform distinct biomechanical functions. We investigated the coordination of MTP flexors and extensors with respect to each other, and to other ankle–foot muscles.

Methods

We analyzed surface electromyographic (EMG) recordings of intrinsic and extrinsic foot muscles for healthy individuals during level treadmill walking, and also during sideways and tiptoe gaits. We computed stride-averaged EMG envelopes and used the timing of peak muscle activity to assess synchronous vs. sequential coordination.

Results

We found that peak MTP flexor activity occurred significantly before peak MTP extensor activity during walking (P < 0.001). The period around stance-to-swing transition could be roughly characterized by sequential peak muscle activity from the ankle plantarflexors, MTP flexors, MTP extensors, and then ankle dorsiflexors. We found that foot muscles that activated synchronously during forward walking tended to dissociate during other locomotor tasks. For instance, extensor hallucis brevis and extensor digitorum brevis muscle activation peaks decoupled during sideways gait.

Conclusions

The sequential peak activity of MTP flexors followed by MTP extensors suggests that their biomechanical contributions may be largely separable from each other and from other extrinsic foot muscles during walking. Meanwhile, the task-specific coordination of the foot muscles during other modes of locomotion indicates a high-level of specificity in their function and control.

Keywords

Foot Ankle Metatarsophalangeal flexion and extension EMG Walking Muscle coordination 

Abbreviations

EDB

Extensor digitorum brevis

EHB

Extensor hallucis brevis

EHL

Extensor hallucis longus

EMG

Electromyographic, electromyogram

FDB

Flexor digitorum brevis

FDHL

Flexor digitorum longus and flexor hallucis longus

FDL

Flexor digitorum longus

FHL

Flexor hallucis longus

LG

Lateral gastrocnemius

MC

Maximum contraction

MG

Medial gastrocnemius

MTP

Metatarsophalangeal

PB

Peroneus brevis

PL

Peroneus longus

SOL

Soleus

TA

Tibialis anterior

Notes

Acknowledgments

Financial support from the Italian University Ministry (PRIN project), Italian Space Agency (COREA grant), EU FP7-ICT program (MINDWALKER Grant # 247959 and AMARSi Grant # 248311) and Whitaker International Program is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arinci Incel N, Genç H, Erdem HR, Yorgancioglu ZR (2003) Muscle imbalance in hallux valgus: an electromyographic study. Am J Phys Med Rehabil Assoc Acad Physiatr 82:345–349. doi: 10.1097/01.PHM.0000064718.24109.26 Google Scholar
  2. Bus SA, Maas M, Michels RPJ, Levi M (2009) Role of intrinsic muscle atrophy in the etiology of claw toe deformity in diabetic neuropathy may not be as straightforward as widely believed. Diabet Care 32:1063–1067. doi: 10.2337/dc08-2174 CrossRefGoogle Scholar
  3. Carlson-Kuhta P, Trank TV, Smith JL (1998) Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking. J Neurophysiol 79:1687–1701PubMedGoogle Scholar
  4. Cavanagh PR, Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol 42:159–163CrossRefGoogle Scholar
  5. Courtine G, Roy RR, Hodgson J et al (2005) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 93:3127–3145. doi: 10.1152/jn.01073.2004 CrossRefPubMedGoogle Scholar
  6. Courtine G, Papaxanthis C, Schieppati M (2006) Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Exp Brain Res 170:320–335. doi: 10.1007/s00221-005-0215-7 CrossRefPubMedGoogle Scholar
  7. De Carvalho C, König BJ, Vitti M (1967) Electromyographic study of the muscles “extensor digitorum brevis” and “extensor hallucis brevis”. Rev Hosp Clin 22:65–72Google Scholar
  8. Donelan JM, Kram R, Kuo AD (2002) Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 205:3717–3727PubMedGoogle Scholar
  9. Farina D (2006) Interpretation of the surface electromyogram in dynamic contractions. Exerc Sport Sci Rev 34:121–127CrossRefPubMedGoogle Scholar
  10. Fiolkowski P, Brunt D, Bishop M et al (2003) Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg 42:327–333. doi: 10.1053/j.jfas.2003.10.003 CrossRefPubMedGoogle Scholar
  11. Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245:1209–1210CrossRefPubMedGoogle Scholar
  12. Grabowski AM, Rifkin J, Kram R (2010) K3 promoter™ prosthetic foot reduces the metabolic cost of walking for unilateral transtibial amputees. JPO 22:113–120. doi: 10.1097/JPO.0b013e3181cca79c Google Scholar
  13. Gray EG, Basmajian JV (1968) Electromyography and cinematography of leg and foot (“normal” and flat) during walking. Anat Rec 161:1–15. doi: 10.1002/ar.1091610101 CrossRefPubMedGoogle Scholar
  14. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. doi: 10.1016/S1050-6411(00)00027-4 CrossRefPubMedGoogle Scholar
  15. Hogan N (1984) Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Autom Control 29:681–690. doi: 10.1109/TAC.1984.1103644 CrossRefGoogle Scholar
  16. Hug F (2011) Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol 21:1–12. doi: 10.1016/j.jelekin.2010.08.009 CrossRefPubMedGoogle Scholar
  17. Hutton W, Dhanendran M (1981) The mechanics of normal and hallux valgus feet––a quantitative study. Clin Orthop Relat Res 157:7–13PubMedGoogle Scholar
  18. Inman VT, Ralston HJ, De Saunders CMJB et al (1952) Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol 4:187–194. doi: 10.1016/0013-4694(52)90008-4 CrossRefPubMedGoogle Scholar
  19. Kayano J (1986) Dynamic function of medial foot arch. Nihon Seikeigeka Gakkai Zasshi 60:1147–1156PubMedGoogle Scholar
  20. Kelly LA, Kuitunen S, Racinais S, Cresswell AG (2012) Recruitment of the plantar intrinsic foot muscles with increasing postural demand. Clin Biomech 27:46–51. doi: 10.1016/j.clinbiomech.2011.07.013 CrossRefGoogle Scholar
  21. Kelly LA, Cresswell AG, Racinais S et al (2014) Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J R Soc Interface 11:20131188. doi: 10.1098/rsif.2013.1188 CrossRefPubMedGoogle Scholar
  22. Kendall FP (2005) Muscles: testing and function with posture and pain. Lippincott Williams and Wilkins, Baltimore, pp 49–117Google Scholar
  23. Ker RF, Bennett MB, Bibby SR et al (1987) The spring in the arch of the human foot. Nature 325:147–149CrossRefPubMedGoogle Scholar
  24. Kirane YM, Michelson JD, Sharkey NA (2008) Evidence of isometric function of the flexor hallucis longus muscle in normal gait. J Biomech 41:1919–1928. doi: 10.1016/j.jbiomech.2008.03.040 CrossRefPubMedGoogle Scholar
  25. La Scaleia V, Ivanenko YP, Zelik KE, Lacquaniti F (2014) Spinal motor outputs during step-to-step transitions of diverse human gaits. Front Hum Neurosci. doi: 10.3389/fnhum.2014.00305 Google Scholar
  26. Lacquaniti F, Ivanenko YP, d’ Avella A (2013) Evolutionary and developmental modules. Front Comput Neurosci. doi: 10.3389/fncom.2013.00061 Google Scholar
  27. Lippold OCJ (1952) The relation between integrated action potentials in a human muscle and its isometric tension. J Physiol 117:492–499CrossRefPubMedCentralPubMedGoogle Scholar
  28. Mann R, Inman VT (1964) Phasic activity of intrinsic muscles of the foot. J Bone Jt Surg 46:469–481Google Scholar
  29. McKenzie J (1955) The foot as a half-dome. Br Med J 1:1068–1070CrossRefPubMedCentralPubMedGoogle Scholar
  30. McKeon PO, Hertel J, Bramble D, Davis I (2014) The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med doi:  10.1136/bjsports-2013-092690
  31. Murley GS, Tan JM, Edwards RM et al (2014) Foot posture is associated with morphometry of the peroneus longus muscle, tibialis anterior tendon, and Achilles tendon. Scand J Med Sci Sports 24:535–541. doi: 10.1111/sms.12025 CrossRefPubMedGoogle Scholar
  32. Nurse MA, Nigg BM (2001) The effect of changes in foot sensation on plantar pressure and muscle activity. Clin Biomech 16:719–727. doi: 10.1016/S0268-0033(01)00090-0 CrossRefGoogle Scholar
  33. Perry J (1992) Ankle foot complex. Gait Anal. Norm. Pathol. Funct. 51–88Google Scholar
  34. Potvin JR, Brown SH (2004) Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates. J Electromyogr Kinesiol 14:389–399. doi: 10.1016/j.jelekin.2003.10.005 CrossRefPubMedGoogle Scholar
  35. Reeser LA, Susman RL, Stern JT (1983) Electromyographic studies of the human foot: experimental approaches to hominid evolution. Foot Ankle Int 3:391–407. doi: 10.1177/107110078300300607 CrossRefGoogle Scholar
  36. Rolian C, Lieberman DE, Hamill J et al (2009) Walking, running and the evolution of short toes in humans. J Exp Biol 212:713–721. doi: 10.1242/jeb.019885 CrossRefPubMedGoogle Scholar
  37. Rolian C, Lieberman DE, Hallgrímsson B (2010) The coevolution of human hands and feet. Evolution 64:1558–1568. doi: 10.1111/j.1558-5646.2009.00944.x CrossRefPubMedGoogle Scholar
  38. Rudolph KS, Axe MJ, Buchanan TS et al (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 9:62–71CrossRefGoogle Scholar
  39. Saraswat P, Andersen MS, Macwilliams BA (2010) A musculoskeletal foot model for clinical gait analysis. J Biomech 43:1645–1652. doi: 10.1016/j.jbiomech.2010.03.005 CrossRefPubMedGoogle Scholar
  40. Severinsen K, Andersen H (2007) Evaluation of atrophy of foot muscles in diabetic neuropathy––a comparative study of nerve conduction studies and ultrasonography. Clin Neurophysiol 118:2172–2175. doi: 10.1016/j.clinph.2007.06.019 CrossRefPubMedGoogle Scholar
  41. Sheffield FJ, Gersten JW, Mastellone AF (1956) Electromyographic study of the muscles of the foot in normal walking. Am J Phys Med 35:223–236PubMedGoogle Scholar
  42. Siegel KL, Kepple TM, Caldwell GE (1996) Improved agreement of foot segmental power and rate of energy change during gait: inclusion of distal power terms and use of three-dimensional models. J Biomech 29:823–827. doi: 10.1016/0021-9290(96)83336-7 CrossRefPubMedGoogle Scholar
  43. Sinkjær T, Andersen JB, Ladouceur M et al (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523:817–827. doi: 10.1111/j.1469-7793.2000.00817.x CrossRefPubMedCentralPubMedGoogle Scholar
  44. Song S, Geyer H (2011) The energetic cost of adaptive feet in walking. 2011 IEEE Int. Conf. Robot. Biomim. ROBIO. pp 1597–1602Google Scholar
  45. Soysa A, Hiller C, Refshauge K, Burns J (2012) Importance and challenges of measuring intrinsic foot muscle strength. J Foot Ankle Res 5:29. doi: 10.1186/1757-1146-5-29 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Sutherland DH (1966) An electromyographic study of the plantar flexors of the ankle in normal walking on the level. J Bone Jt Surg 48:66–71Google Scholar
  47. Suzuki R (1956) Function of the leg and foot muscles from the viewpoint of the electromyogram. J Jap Orthop Surg 30:775–789Google Scholar
  48. Takahashi KZ, Stanhope SJ (2013) Mechanical energy profiles of the combined ankle–foot system in normal gait: insights for prosthetic designs. Gait Posture. doi: 10.1016/j.gaitpost.2013.04.002 Google Scholar
  49. Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613. doi: 10.1152/jn.00681.2004 CrossRefPubMedGoogle Scholar
  50. Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19:601–607. doi: 10.1016/j.conb.2009.09.002 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Tresch MC, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167. doi: 10.1038/5721 CrossRefPubMedGoogle Scholar
  52. Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41:1203–1216PubMedGoogle Scholar
  53. Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411. doi: 10.1016/0013-4694(87)90003-4 CrossRefPubMedGoogle Scholar
  54. Wright WG, Ivanenko YP, Gurfinkel VS (2012) Foot anatomy specialization for postural sensation and control. J Neurophysiol 107:1513–1521. doi: 10.1152/jn.00256.2011 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Yang JF, Lamont EV, Pang MYC (2005) Split-Belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci 25:6869–6876. doi: 10.1523/JNEUROSCI.1765-05.2005 CrossRefPubMedGoogle Scholar
  56. Zelik KE, Kuo AD (2010) Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol 213:4257–4264. doi: 10.1242/jeb.044297 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Zelik KE, Scaleia VL, Ivanenko YP, Lacquaniti F (2014) Can modular strategies simplify neural control of multidirectional human locomotion? J Neurophysiol 111:1686–1702. doi: 10.1152/jn.00776.2013 CrossRefPubMedGoogle Scholar
  58. Zhu J, Wang Q, Wang L (2014) On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Trans Ind Electron 61:4797–4807. doi: 10.1109/TIE.2013.2293691 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karl E. Zelik
    • 1
    • 2
    • 3
    Email author
  • Valentina La Scaleia
    • 4
  • Yuri P. Ivanenko
    • 1
  • Francesco Lacquaniti
    • 1
    • 4
    • 5
  1. 1.Laboratory of Neuromotor PhysiologyIRCCS Santa Lucia FoundationRomeItaly
  2. 2.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Department of Physical Medicine and RehabilitationVanderbilt UniversityNashvilleUSA
  4. 4.Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
  5. 5.Centre of Space Bio-medicineUniversity of Rome Tor VergataRomeItaly

Personalised recommendations