Advertisement

European Journal of Applied Physiology

, Volume 115, Issue 4, pp 715–725 | Cite as

Mental fatigue does not affect maximal anaerobic exercise performance

  • Kristy MartinEmail author
  • Kevin G. Thompson
  • Richard Keegan
  • Nick Ball
  • Ben Rattray
Original Article

Abstract

Purpose

Mental fatigue can negatively impact on submaximal endurance exercise and has been attributed to changes in perceived exertion rather than changes in physiological variables. The impact of mental fatigue on maximal anaerobic performance is, however, unclear. Therefore, the aim of the present study was to induce a state of mental fatigue to examine the effects on performance, physiological and perceptual variables from subsequent tests of power, strength and anaerobic capacity.

Methods

Twelve participants took part in the single-blind, randomised, crossover design study. Mental fatigue was induced by 90 min of the computer-based Continuous Performance Task AX version. Control treatment consisted of 90 min of watching emotionally neutral documentaries. Participants consequently completed countermovement jump, isometric leg extension and a 3-min all-out cycling tests.

Results

Results of repeated measures analysis of variance and paired t tests revealed no difference in any performance or physiological variable. Rating of perceived exertion tended to be greater when mentally fatigued (mental fatigue = 19 ± 1 vs control = 18 ± 1, p = 0.096, \(\eta^{2}_{\text{p}}\) = .232) and intrinsic motivation reduced (mental fatigue = 11 ± 4 vs control = 13 ± 6, p = 0.063, d = 0.597) in the mental fatigue condition.

Conclusions

Near identical responses in performance and physiological parameters between mental fatigue and control conditions suggest that peripheral mechanisms primarily regulate maximal anaerobic exercise. Whereas mental fatigue can negatively impact submaximal endurance exercise, it appears that explosive power, voluntary maximal strength and anaerobic work capacity are unaffected.

Keywords

Mental fatigue Peripheral Power Strength Anaerobic capacity 

Abbreviations

3MT

Three-minute all-out cycle test

ANOVA

Analysis of variance

AX-CPT

Continuous performance test AX version

CMJ

Countermovement jump

CON

Control

EMG

Electromyography

MF

Mental fatigue

POMS

Profile of mood states

RPE

Rating of perceived exertion

RSME

Rating scale of mental effort

SIMS

Situational intrinsic motivation scale

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments conducted for the present manuscript comply with current laws of Australia.

Refe rences

  1. Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045. doi: 10.1249/MSS.0b013e31821f59ab CrossRefPubMedGoogle Scholar
  2. Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37:379–384. doi: 10.3758/BF0319270 CrossRefPubMedGoogle Scholar
  3. Balog EM, Thompson LV, Fitts RH (1994) Role of sarcolemma action potentials and excitability in muscle fatigue. J Appl Physiol 76:2157–2163CrossRefPubMedGoogle Scholar
  4. Bartlett FC (1943) Ferrier lecture: fatigue following highly skilled work. Proc R Soc Lond B Biol Sci 131:247–257. doi: 10.1098/rspb.1943.0006 CrossRefGoogle Scholar
  5. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027PubMedGoogle Scholar
  6. Boksem MA, Tops M (2008) Mental fatigue: costs and benefits. Brain Res Rev 59:125–139. doi: 10.1016/j.brainresrev.2008.07.001 CrossRefPubMedGoogle Scholar
  7. Boksem MA, Meijman TF, Lorist MM (2005) Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res 25:107–116. doi: 10.1016/j.cogbrainres.2005.04.011 CrossRefPubMedGoogle Scholar
  8. Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98PubMedGoogle Scholar
  9. Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381. doi: 10.1249/00005768-198205000-00012 PubMedGoogle Scholar
  10. Bray SR, Martin Ginis KA, Hicks AL, Woodgate J (2008) Effects of self-regulatory strength depletion on muscular performance and EMG activation. Psychophysiology 45:337–343. doi: 10.1111/j.1469-8986.2007.00625.x CrossRefPubMedGoogle Scholar
  11. Bray SR, Graham JD, Martin Ginis KA, Hicks AL (2012) Cognitive task performance causes impaired maximum force production in human hand flexor muscles. Biol Psychol 89:195–200. doi: 10.1016/j.biopsycho.2011.10.008 CrossRefPubMedGoogle Scholar
  12. Brownsberger J, Edwards A, Crowther R, Cottrell D (2013) Impact of mental fatigue on self-paced exercise. Int J Sports Med 34:1029–1036. doi: 10.1055/s-0033-1343402 CrossRefPubMedGoogle Scholar
  13. Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38:1995–2003. doi: 10.1249/01.mss.0000232024.06114.a6 CrossRefPubMedGoogle Scholar
  14. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749CrossRefPubMedGoogle Scholar
  15. Coggan AR, Coyle EF (1991) Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sports Sci Rev 19:1–40CrossRefGoogle Scholar
  16. Cohen J (1992) A power primer. Psychol Bull 112:155–159. doi: 10.1037/0033-2909.112.1.155 CrossRefPubMedGoogle Scholar
  17. Crewe H, Tucker R, Noakes TD (2008) The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur J Appl Physiol 103:569–577. doi: 10.1007/s00421-008-0741-7 CrossRefPubMedGoogle Scholar
  18. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol Rev 284:R399–R404CrossRefGoogle Scholar
  19. Deci EL (1971) Effects of externally mediated rewards on intrinsic motivation. J Pers Soc Psychol 18:105–115. doi: 10.1037/h0030644 CrossRefGoogle Scholar
  20. Deci EL (1972) Effects of contingent and non-contingent rewards and controls on intrinsic motivation. Organ Behav Hum Perf 8:217–229. doi: 10.1016/0030-5073(72)90047-5 CrossRefGoogle Scholar
  21. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B (2009) Analysis of high intensity activity in premier league soccer. Int J Sports Med 30:205–212. doi: 10.1055/s-0028-1105950 CrossRefPubMedGoogle Scholar
  22. Fitt RH, Metzger JM (1993) Mechanisms of muscular fatigue. In: Poortmans JR (ed) Principles of Exercise Biochemistry, vol 38, 2nd edn. S. Karger AG, Farmington, pp 248–268Google Scholar
  23. Ford KR, van den Bogert J, Myer JD, Shapiro R, Hewett TE (2008) The effects of age and skill level on knee musculature co-contraction during functional activities: a systematic review. Br J Sports Med 42:561–566. doi: 10.1136/bjsm.2007.044883 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Foster C, de Koning JJ, Hettinga F, Lampen J, Dodge C, Bobbert M, Porcari JP (2003) Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc 35:826–831CrossRefPubMedGoogle Scholar
  25. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMedGoogle Scholar
  26. Guay F, Vallerand RJ, Blanchard CM (2000) On the assessment of state intrinsic and extrinsic motivation: the situational motivation scale (SIMS). Motiv Emot 24:175–213. doi: 10.1023/A:1005614228250 CrossRefGoogle Scholar
  27. Hallett M (2007) Volitional control of movement: the physiology of free will. Clin Neurophysiol 118:1179–1192. doi: 10.1016/j.clinph.2007.03.019 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Holding D (1983) Fatigue stress and fatigue in human performance. Wiley, DurhamGoogle Scholar
  29. Hübner-Wozniak E, Kosmol A, Lutoslawska G, Bem EZ (2004) Anaerobic performance of arms and legs in male and female free style wrestlers. J Sci Med Sport 74:473–480. doi: 10.1016/S1440-2440(04)80266-4 CrossRefGoogle Scholar
  30. Lorist MM, Boksem MAS, Ridderinkhof KR (2005) Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognit Brain Res 24:199–205. doi: 10.1016/j.cogbrainres.2005.01.018 CrossRefGoogle Scholar
  31. Lovatt D et al (2012) Neuronal adenosine release, and not astrocytic AtP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA 109:6265–6270. doi: 10.1073/pnas.1120997109 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106:857–864. doi: 10.1152/japplphysiol.91324.2008 CrossRefPubMedGoogle Scholar
  33. McNair DM, Lorr M, Droppleman LF (1985) Profile of mood states manual. Educational and Industrial Testing Services, San DiegoGoogle Scholar
  34. Meijman TF (2000) The theory of the stop-emotion: on the functionality of fatigue. In: Pogorski D, Karwowski W (eds) Ergonomics and safety for global business quality and production. CIOP, Warschaw, pp 45–50Google Scholar
  35. Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–354. doi: 10.1007/s00421-005-0088-2 CrossRefPubMedGoogle Scholar
  36. Noakes TD (2012) Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol 3:1–13. doi: 10.3389/fphys.2012.00082 CrossRefGoogle Scholar
  37. Nummela A, Vuorimaa T, Rusko H (1992) Changes in force production, blood lactate and EMG activity in the 400‐m sprint. J Sport Sci 10:217–228. doi: 10.1080/02640419208729920 CrossRefGoogle Scholar
  38. Paavolainen L, Häkkinen K, Hämäläinen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86:1527–1533CrossRefPubMedGoogle Scholar
  39. Pageaux B, Marcora S, Lepers L (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45:2254–2264. doi: 10.1249/MSS.0b013e31829b504a CrossRefPubMedGoogle Scholar
  40. Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114:1–11. doi: 10.1007/s00421-014-2838-5 CrossRefGoogle Scholar
  41. Paus T, Koski L, Caramanos Z, Westbury C (1998) Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. NeuroReport 9:R37–R47CrossRefPubMedGoogle Scholar
  42. Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri FM (2007) Variation in top level soccer match performance. Int J Sports Med 28:1018–1024. doi: 10.1055/s-2007-965158 CrossRefPubMedGoogle Scholar
  43. Riccio CA, Reynolds CR, Lowe P, Moore JJ (2002) The continuous performance test: a window on the neural substrates for attention? Arch Clin Neuropsychol 17:235–272. doi: 10.1093/arclin/17.3.235 CrossRefPubMedGoogle Scholar
  44. Rozand V, Lebon F, Papaxanthis C, Lepers R (2014) Does a mental-training session induce neuromuscular fatigue? Med Sci Sports Exerc 46:1981–1989. doi: 10.1249/MSS.0000000000000327 CrossRefPubMedGoogle Scholar
  45. Rozand V, Pageaux B, Marcora SM, Papaxanthis C, Lepers R (2014) Does mental exertion alter maximal muscle activation? Front Hum Nuerosci. doi: 10.3389/fnhum.2014.00755 Google Scholar
  46. Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF (2006) Separate neural pathways process different decision costs. Nat Neurosci 9:1161–1168. doi: 10.1038/nn1756 CrossRefPubMedGoogle Scholar
  47. Silvestrini N, Gendolla GH (2007) Mood effects on autonomic activity in mood regulation. Psychophysiology 44:650–659. doi: 10.1111/j.1469-8986.2007.00532.x CrossRefPubMedGoogle Scholar
  48. Snow A, LeUnes A (1994) Characteristics of sport research using the profile of mood states. J Sport Behav 17:207–211Google Scholar
  49. Standage M, Duda JL, Treasure DC, Prusak KA (2003) Validity, reliability, and invariance of the situational motivation scale (SIMS) across diverse physical activity contexts. J Sport Exerc Psychol 25:19–43Google Scholar
  50. Taylor K, Hopkins W, Chapman DW, Cronin JB, Newton MJ, Cormack S, Gill N (2012) Monitoring neuromuscular fatigue using vertical jumps. Dissertation, Edith Cowan UniversityGoogle Scholar
  51. Thompson K (2014) Pacing: Individual strategies for optimal performance. Human Kinetics, ChampaignGoogle Scholar
  52. van der Linden D, Frese M, Meijman TF (2003) Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst) 113:45–65. doi: 10.1016/S0001-6918(02)00150-6 CrossRefGoogle Scholar
  53. Vanhatalo A, Doust JH, Burnely M (2007) Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc 39:548–555. doi: 10.1249/mss.0b013e31802dd3e6 CrossRefPubMedGoogle Scholar
  54. Vansteenkiste M, Deci EL (2003) Competitively contingent rewards and intrinsic motivation: can losers remain motivated? Motiv Emotion 27:273–299. doi: 10.1023/A:1026259005264 CrossRefGoogle Scholar
  55. Verwy WB, Veltman HA (1996) Detecting short periods of elevated workload: a comparison of nine workload assessment techniques. J Exp Psychol 2:270–285. doi: 10.1037/1076-898X.2.3.270 Google Scholar
  56. Walton ME, Bennerman DM, Alterescu K, Rushworth MF (2003) Functional specialisation within medial frontal cortex of the anterior cingulated for evaluating effort-related decisions. J Neurosci 23:6475–6479PubMedGoogle Scholar
  57. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF (2006) Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 19:1302–1314. doi: 10.1016/j.neunet.2006.03.005 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgans WP (2001) Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physiol 90:1392–1399PubMedGoogle Scholar
  59. Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP (2002) Brain activation by central command during actual and imagined handgrip under hypnosis. J Appl Physiol 92:1317–1324. doi: 10.1152/japplphysiol.00939.2001 CrossRefPubMedGoogle Scholar
  60. Williamson JW, Fadel PJ, Mitchell JH (2006) New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol 91:51–58. doi: 10.1113/expphysiol.2005.032037 CrossRefPubMedGoogle Scholar
  61. Zijlstra FRH (1993) Effciency in work behavior: a design approach for modern tools. Delft University Press, DelftGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kristy Martin
    • 1
    • 2
    Email author
  • Kevin G. Thompson
    • 1
    • 2
  • Richard Keegan
    • 1
    • 2
  • Nick Ball
    • 1
    • 2
  • Ben Rattray
    • 1
    • 2
  1. 1.Discipline of Sport and Exercise Science, Faculty of HealthUniversity of CanberraCanberraAustralia
  2. 2.UC Research Institute for Sport and ExerciseUniversity of CanberraCanberraAustralia

Personalised recommendations