Intramuscular determinants of the ability to recover work capacity above critical power

Abstract

Purpose

The primary purpose of this investigation was to compare the recovery of the W′ to the recovery of intramuscular substrates and metabolites using 31P- and 1H-magnetic resonance spectroscopy.

Methods

Ten healthy recreationally trained subjects were tested to determine critical power (CP) and W′ for single-leg-extensor exercise. They subsequently exercised in the bore of a 1.5-T MRI scanner at a supra-CP work rate. Following exhaustion, the subjects rested in place for 1, 2, 5 or 7 min, and then repeated the effort. The temporal course of W′ recovery was estimated, which was then compared to the recovery of creatine phosphate [PCr], pH, carnosine content, and to the output of a novel derivation of the W′ BAL model.

Results

W′ recovery closely correlated with the predictions of the novel model (r = 0.97, p = 0.03). [PCr] recovered faster \(\left( {t \frac{ 1}{ 2}\;{ = }\; 3 8 {\text{s}}} \right)\) than W′ \(\left( {t\frac{ 1}{ 2}\;{ = }\; 2 3 2 {\text{s}}} \right)\) The W′ available for the second exercise bout was directly correlated with the difference between [PCr] at the beginning of the work bout and [PCr] at exhaustion (r = 0.99, p = 0.005). Nonlinear regression revealed an inverse curvilinear relationship between carnosine concentration and the W′ t 1/2 (r 2 = 0.55).

Conclusion

The kinetics of W′ recovery in single-leg-extensor exercise is comparable to that observed in whole-body exercise, suggesting a conserved mechanism. The extent to which the recovery of the W′ can be directly attributed to the recovery of [PCr] is unclear. The relationship of the W′ to muscle carnosine content suggests novel future avenues of investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

P:

Power

W:

Watt

CP:

Critical power; asymptote of the power–duration relationship

W′ :

“W-prime”; curvature constant of the power–duration relationship

W′ BAL :

Amount or balance of W′ remaining

T LIM :

Time limit of tolerance

τ W′ :

Tau-W′; time constant of recovery of the W′

DCP :

Difference between recovery power and CP

CWR:

Constant work rate

\({\dot{\text{V}}\text{O}}_{ 2}\) :

Volume of oxygen uptake

D[PCr] :

Difference between [PCr] at the end of recovery and [PCr] at the time of exhaustion

PCr:

Creatine phosphate

Pi :

Inorganic phosphate

Ca2+ :

Calcium

BC :

Conditioning bout

BE :

Experimental bout

31P-MRS:

31P-Magnetic resonance spectroscopy

1H-MRS:

1H-Magnetic resonance spectroscopy

References

  1. Adams GR, Fisher MJ, Meyer RA (1991) Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle. Am J Physiol 260(4 Pt 1):C805–C812

    CAS  PubMed  Google Scholar 

  2. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. doi:10.1152/physrev.00015.2007

    Article  CAS  PubMed  Google Scholar 

  3. Andersen P (1975) Capillary density in skeletal muscle of man. Acta Physiol Scand 95(2):203–205. doi:10.1111/j.1748-1716.1975.tb10043.x

    Article  CAS  PubMed  Google Scholar 

  4. Baguet A, Koppo K, Pottier A, Derave W (2010) Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol 108(3):495–503. doi:10.1007/s00421-009-1225-0

    Article  CAS  PubMed  Google Scholar 

  5. Baker AJ, Kostov KG, Miller RG, Weiner MW (1993) Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol (1985) 74(5):2294–2300

    CAS  Google Scholar 

  6. Beltman JG, Sargeant AJ, Haan H, van Mechelen W, de Haan A (2004) Changes in PCr/Cr ratio in single characterized muscle fibre fragments after only a few maximal voluntary contractions in humans. Acta Physiol Scand 180(2):187–193. doi:10.1046/j.0001-6772.2003.01257.x

    Article  CAS  PubMed  Google Scholar 

  7. Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82(3):178–187

    Article  CAS  PubMed  Google Scholar 

  8. Burnley M, Vanhatalo A, Fulford J, Jones AM (2010) Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol 95(7):798–807. doi:10.1113/expphysiol.2010.052688

    Article  CAS  PubMed  Google Scholar 

  9. Cady EB, Jones DA, Lynn J, Newham DJ (1989) Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 418:311–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chidnok W, Dimenna FJ, Bailey SJ, Vanhatalo A, Morton RH, Wilkerson DP, Jones AM (2011) exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sport Exerc. doi:10.1249/MSS.0b013e31823ea28a

    Google Scholar 

  11. Chidnok W, Dimenna FJ, Fulford J, Bailey SJ, Skiba PF, Vanhatalo A, Jones AM (2013a) Muscle metabolic responses during high-intensity intermittent exercise measured by 31P-MRS: relationship to the critical power concept. Am J Physiol Regul Integr Comp Physiol. doi:10.1152/ajpregu.00406.2013

    PubMed Central  PubMed  Google Scholar 

  12. Chidnok W, Fulford J, Bailey SJ, Dimenna FJ, Skiba PF, Vanhatalo A, Jones AM (2013b) Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the “critical power”. J Appl Physiol 115(2):243–250. doi:10.1152/japplphysiol.00334.2013

    Article  PubMed  Google Scholar 

  13. Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ (2003) Intensity-dependent tolerance to exercise after attaining V(O2) max in humans. J Appl Physiol 95(2):483–490. doi:10.1152/japplphysiol.01142.2002

    Article  PubMed  Google Scholar 

  14. Dutka TL, Lamb GD (2004) Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 25(3):203–213

    Article  CAS  PubMed  Google Scholar 

  15. Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD (2012) Effects of carnosine on contractile apparatus Ca(2)(±) sensitivity and sarcoplasmic reticulum Ca(2)(±) release in human skeletal muscle fibers. J Appl Physiol 112(5):728–736. doi:10.1152/japplphysiol.01331.2011

    Article  CAS  PubMed  Google Scholar 

  16. Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA (2010) Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol 108(4):866–874. doi:10.1152/japplphysiol.91425.2008

    Article  CAS  PubMed  Google Scholar 

  17. Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp B (2003) The curvature constant parameter of the power-duration curve for varied-power exercise. Med Sci Sports Exerc 35(8):1413

    Article  PubMed  Google Scholar 

  18. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32(2):225–233. doi:10.1007/s00726-006-0364-4

    Article  CAS  PubMed  Google Scholar 

  19. James A, Green S (2012) A phenomenological model of muscle fatigue and the power-endurance relationship. J Appl Physiol (1985) 113(10):1643–1651. doi:10.1152/japplphysiol.00800.2012

    Article  CAS  Google Scholar 

  20. Jenkins D, Kretek K, Bishop D (1998) The duration of predicting trials influences time to fatigue at critical power. J Sci Med Sport 1(4):213–218

    Article  CAS  PubMed  Google Scholar 

  21. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18(1):111–129

    Article  CAS  PubMed  Google Scholar 

  22. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC (2008) Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 294(2):R585–R593. doi:10.1152/ajpregu.00731.2007

    Article  CAS  PubMed  Google Scholar 

  23. Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for the determination of V O2 max and exercise tolerance. Med Sci Sport Exerc 42:1876–1890. doi:10.1249/MSS.0b013e3181d9cf7f

    Article  Google Scholar 

  24. Karatzaferi C, de Haan A, van Mechelen W, Sargeant AJ (2001) Metabolism changes in single human fibres during brief maximal exercise. Exp Physiol 86(3):411–415

    Article  CAS  PubMed  Google Scholar 

  25. Krustrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J (2009) Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol 587(Pt 8):1843–1856. doi:10.1113/jphysiol.2008.166397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lamont C, Miller DJ (1992) Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscle. J Physiol 454:421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lexell J, Downham D, Sjostrom M (1984) Distribution of different fibre types in human skeletal muscles. A statistical and computational study of the fibre type arrangement in m. vastus lateralis of young, healthy males. J Neurol Sci 65(3):353–365

    Article  CAS  PubMed  Google Scholar 

  28. Lexell J, Downham D, Sjostrom M (1986) Distribution of different fibre types in human skeletal muscles. Fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci 72(2–3):211–222

    Article  CAS  PubMed  Google Scholar 

  29. Mahon M, Toman A, Willan PL, Bagnall KM (1984) Variability of histochemical and morphometric data from needle biopsy specimens of human quadriceps femoris muscle. J Neurol Sci 63(1):85–100

    Article  CAS  PubMed  Google Scholar 

  30. Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8(1–4):329–338

    Article  Google Scholar 

  31. Morton RH (1996) A 3-parameter critical power model. Ergonomics 39(4):611–619

    Article  CAS  PubMed  Google Scholar 

  32. Morton RH, Billat LV (2004) The critical power model for intermittent exercise. Eur J Appl Physiol 91(2–3):303–307. doi:10.1007/s00421-003-0987-z

    Article  PubMed  Google Scholar 

  33. Noordhof D, Skiba PF, de Koning J (2013) Determining anaerobic capacity in sporting activities. Int J Sports Physiol Perform 8:475–482

    PubMed  Google Scholar 

  34. Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty-six human muscles. An autopsy study. J Neurol Sci 19(3):307–318

    Article  CAS  PubMed  Google Scholar 

  35. Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31(9):1265–1279

    Article  CAS  PubMed  Google Scholar 

  36. Renoux JC, Petit B, Billat V, Koralsztein JP (2000) Calculation of times to exhaustion at 100 and 120 % maximal aerobic speed. Ergonomics 43(2):160–166

    Article  CAS  PubMed  Google Scholar 

  37. Ruff RL (1992) Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. Am J Physiol 262(1 Pt 1):C229–C234

    CAS  PubMed  Google Scholar 

  38. Ruff RL (1996) Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand 156(3):159–168. doi:10.1046/j.1365-201X.1996.189000.x

    Article  CAS  PubMed  Google Scholar 

  39. Sahlin K, Ren JM (1989) Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol (1985) 67(2):648–654

    CAS  Google Scholar 

  40. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. doi:10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  41. Sjogaard G (1982) Capillary supply and cross-sectional area of slow and fast twitch muscle fibres in man. Histochemistry 76(4):547–555

    Article  CAS  PubMed  Google Scholar 

  42. Skiba PF, Chidnok W, Vanhatalo A, Jones AM (2012) Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc 44(8):1526–1532. doi:10.1249/MSS.0b013e3182517a80

    Article  PubMed  Google Scholar 

  43. Skiba PF, Jackman S, Clarke DC, Vanhatalo A, Jones AM (2013) Effect of Work & Recovery Durations on W′ Reconstitution during Intermittent Exercise. Med Sci Sports Exerc 46(7):1433–1440

    Article  Google Scholar 

  44. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1(1):77–94

    CAS  PubMed  Google Scholar 

  45. Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P (2009) Beta-alanine improves sprint performance in endurance cycling. Med Sci Sport Exerc 41(4):898–903. doi:10.1249/MSS.0b013e31818db708

    Article  Google Scholar 

  46. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129(1):35–43

    Article  CAS  PubMed  Google Scholar 

  47. Vanhatalo A, Fulford J, DiMenna FJ, Jones AM (2010a) Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol 95(4):528–540. doi:10.1113/expphysiol.2009.050500

    Article  CAS  PubMed  Google Scholar 

  48. Vanhatalo A, McNaughton LR, Siegler J, Jones AM (2010b) Effect of induced alkalosis on the power-duration relationship of “all-out” exercise. Med Sci Sports Exerc 42(3):563–570. doi:10.1249/MSS.0b013e3181b71a4a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PFS and DCC would like to acknowledge the contribution of Dr. Andy Froncioni to the discussion on the modelling and mathematics of the recovery of the W′.

Conflict of interest

This research was not supported by external funding. Philip Friere Skiba has no conflicts of interest to report. Jonathan Fulford has no conflicts of interest to report. David Clarke has no conflicts of interest to report. Anni Vanhatalo has no conflicts of interest to report. Andrew M. Jones has no conflicts of interest to report.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Jones.

Additional information

Communicated by David C. Poole.

Appendices

Appendix 1

It is possible to derive the equation presented by Skiba et al. (2012) from first principles.

Here we conceptualize W′ in the framework of chemical kinetics. During periods of exertion above critical power (CP), W′ is depleted at a rate directly proportional to the difference between the power output and CP.

$$\frac{{dW^{\prime}}}{dt} = - (P - CP)$$

This first-order linear differential equation can be solved for a segment of time from u to t in which P exceeds CP, such that the amount of W′ remaining, W′(t), is calculated as follows:

$$W^{\prime}(t) = W^{\prime}(u) - (P - CP)(t - u)$$

During bouts of recovery in which P is less than CP, the rate of change of W′ depends on the amount of W′ remaining (i.e. recovery slows as W′ approaches the initial W′, W 0 ) and the power output relative to CP.

$$\frac{{dW^{\prime}}}{dt} = \left( 1 - \frac{W^{\prime}}{W^{\prime}_0} \right) (\text{CP} - P) $$

The first-order differential equation is solved using standard methods as follows.

$$\begin{gathered} D_{\text{CP}} = CP - P \hfill \\ \int \frac {dW^{\prime}} {\left(1 - \frac {W^{\prime}} {W^{\prime}_0} \right)} = \int D_{\text{CP}} dt \hfill \\ \end{gathered}$$

The integral is solved using the substitution rule. Note also that P is considered constant with respect to time, such that D CP is constant.

$$\ln \left( {1 - \frac{{W^{\prime}(t)}}{{W^{\prime}_{o} }}} \right) = \frac{{D_{CP} }}{{ - W^{\prime}_{o} }}t + const$$

Here we state that for any time = u that follows the expenditure of W′, W′(t) = W′(u), which by definition is less than W 0. We substitute these values into the equation, and solve algebraically for W′(t) to obtain the final solution:

$$W^{\prime}(t) = W^{\prime}_{0} - (W^{\prime}_{0} - W^{\prime}\left( u \right))e^{{{{ - D_{\text{CP}} } \mathord{\left/ {\vphantom {{ - D_{\text{CP}} } {W^{\prime}_{0} }}} \right. \kern-0pt} {W^{\prime}_{0} }}\left( {t - u} \right)}}$$

We can also analyse the special case of a single segment of time in which the athlete exercises above CP, such that the initial value for W′(t) = W 0. The recovery after such a bout can be modelled using the following equation:

$$W^{\prime}\left( t \right) = W^{\prime}_{0} - W^{\prime}_{\exp } e^{{ - D_{\text{cp}} {t \mathord{\left/ {\vphantom {t {W0}}} \right. \kern-0pt} W^{\prime}_{0}}}}$$

where W′ exp is the W′ expended during the prior segment in which P ≥ CP.

To calculate the time course of W′ for an entire power file, we compute W′ depletion for each segment of the power time course in which P ≥ CP and W′ recovery when P ≤ CP.

Appendix 2

Model of W′ recharge kinetics

We tested the notion that a number of linearly recovering entities (e.g. different synergistic muscles or individual muscle fibres or groups of fibres) sum to form the apparent nonlinear macroscopic recovery of a larger system (a muscle or muscle group).

$$\begin{gathered} \frac{{W^{\prime}\left( t \right)}}{{W^{\prime}_{0} }} = \left( {1 - \frac{{W^{\prime}_{\exp } }}{{W^{\prime}_{0} }}} \right) + \frac{{\left( {CP - P} \right)t}}{{W^{\prime}_{0} }},W^{\prime} \ge 0 \hfill \\ \frac{{W^{\prime}_{i} \left( t \right)}}{{W^{\prime}_{0i} }} = \left( {1 - \frac{{W^{\prime}_{\exp i} }}{{W^{\prime}_{0i} }}} \right) + \frac{{f_{i} \left( {CP - P} \right)t}}{{W^{\prime}_{0i} }},W^{\prime}_{i} \ge 0,0 \le f_{i} \le 1,\sum\limits_{i = 1}^{n} {k_{i} = 1} \hfill \\ \end{gathered}$$

For the purposes of the simulation, we assumed that the macroscopic W′ recharge rate was solely a function of the difference between CP and power output, and that 0 ≤ = W′ ≤ = W′ 0, where W′ 0 represents the fully charged W′ at rest. The macroscopic W′ was the arithmetic sum of multiple “microscopic” W′, one for each component of the system (Fig. 5a). The microscopic W′ recharge rate for a given component was a function of the amount of the total energy, (CP–P)*t, that it drew. This was defined as the fractional recharge, f i. Different components of the muscle (fibres) or synergistic muscle group (individual muscles) in question may have different W′ 0 and f i values, with the properties of the distributions of these values determining the macroscopic W′ properties (Fig. 5b).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skiba, P.F., Fulford, J., Clarke, D.C. et al. Intramuscular determinants of the ability to recover work capacity above critical power. Eur J Appl Physiol 115, 703–713 (2015). https://doi.org/10.1007/s00421-014-3050-3

Download citation

Keywords

  • Critical power
  • W′
  • Creatine phosphate
  • Carnosine